Bimodal approximation for anomalous diffusion in a potential

被引:12
|
作者
Kalmykov, YP
Coffey, WT
Titov, SV
机构
[1] Univ Perpignan, Grp Phys Mol, Lab Math & Phys Syst, F-66860 Perpignan, France
[2] Univ Dublin Trinity Coll, Dept Elect & Elect Engn, Dublin 2, Ireland
[3] Russian Acad Sci, Inst Radio Engn & Elect, Fryazino 141190, Moscow Region, Russia
来源
PHYSICAL REVIEW E | 2004年 / 69卷 / 02期
关键词
D O I
10.1103/PhysRevE.69.021105
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Exact and approximate solutions of the fractional diffusion equation for an assembly of fixed-axis dipoles are derived for anomalous noninertial rotational diffusion in a double-well potential. It is shown that knowledge of three time constants characterizing the normal diffusion, viz., the integral relaxation time, the effective relaxation time, and the inverse of the smallest eigenvalue of the Fokker-Planck operator, is sufficient to accurately predict the anomalous relaxation behavior for all time scales of interest.
引用
收藏
页码:021105 / 1
页数:7
相关论文
共 50 条
  • [1] A new theory for anomalous diffusion with a bimodal flux distribution
    L. Bevilacqua
    A. C. N. R. Galeão
    J. G. Simas
    Ana Paula Rio Doce
    [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2013, 35 : 431 - 440
  • [2] Numerical analysis of an anomalous diffusion with a bimodal flux distribution
    Vasconcellos, J. F. V.
    Marinho, G. M.
    Zani, J. H.
    [J]. REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2017, 33 (3-4): : 242 - 249
  • [3] A new theory for anomalous diffusion with a bimodal flux distribution
    Bevilacqua, L.
    Galeao, A. C. N. R.
    Simas, J. G.
    Rio Doce, Ana Paula
    [J]. JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2013, 35 (04) : 431 - 440
  • [4] APPROXIMATION OF A SEMIGROUP MODEL OF ANOMALOUS DIFFUSION IN A BOUNDED SET
    Thompson, Stephen
    Seidman, Thomas I.
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2013, 2 (01): : 173 - 192
  • [5] Normal and anomalous diffusion in random potential landscapes
    Camboni, F.
    Sokolov, I. M.
    [J]. PHYSICAL REVIEW E, 2012, 85 (05):
  • [6] Ergodic Measure and Potential Control of Anomalous Diffusion
    Wen, Bao
    Li, Ming-Gen
    Liu, Jian
    Bao, Jing-Dong
    [J]. ENTROPY, 2023, 25 (07)
  • [7] Random walk approximation of fractional-order multiscaling anomalous diffusion
    Zhang, Yong
    Benson, David A.
    Meerschaert, Mark M.
    LaBolle, Eric M.
    Scheffler, Hans-Peter
    [J]. PHYSICAL REVIEW E, 2006, 74 (02):
  • [8] Approximation diffusion for the Nonlinear Schrodinger equation with a random potential
    Barrue, Gregoire
    Debussche, Arnaud
    Tusseau, Maxime
    [J]. ASYMPTOTIC ANALYSIS, 2024, 138 (03) : 175 - 224
  • [9] Theory of relaxation dynamics for anomalous diffusion processes in harmonic potential
    Wang, Xudong
    Chen, Yao
    Deng, Weihua
    [J]. PHYSICAL REVIEW E, 2020, 101 (04)
  • [10] Simulations of anomalous ion diffusion in experimentally measured turbulent potential
    J. Seidl
    L. Krlín
    R. Pánek
    P. Pavlo
    J. Stöckel
    V. Svoboda
    [J]. The European Physical Journal D, 2009, 54 : 399 - 407