AUTOMATIC BLOOD POOL IDENTIFICATION IN CONTRAST ULTRASOUND USING PRINCIPAL COMPONENT ANALYSIS

被引:0
|
作者
Saporito, S. [1 ]
Herold, I. H. E. [1 ,2 ]
Houthuizen, P. [2 ]
Korsten, H. H. M. [2 ]
van Assen, H. C. [1 ]
Mischi, M. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
[2] Catharina Hosp, Dept Anesthesia & Intens Care, Eindhoven, Netherlands
关键词
Contrast ultrasound; Indicator dilution theory; Spectral clustering; INDICATOR;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Several cardiovascular parameters of clinical interest can be assessed by indicator dilution techniques. Ultrasound contrast agents have been proposed as non-invasive indicator, showing promising results for blood volume estimation. However, the definition of an optimal region of interest for quantification of the indicator remains a critical step in the procedure, usually performed manually. In this work we present an automatic method to extract indicator dilution curves. Dimensionality reduction is achieved by principal component analysis followed by clustering to identify the different regions of interest. The method is evaluated on in vitro and in vivo datasets, compared to manually defined regions. The average difference was -3.47% +/- 3.58% for in vitro volume estimates and the error was 1.29% +/- 2.54% for trans-pulmonary mean transit time estimation. The new method allows kinetic parameter estimates in close agreement with those obtained manually; therefore it is a promising alternative for indicator dilution curve extraction.
引用
收藏
页码:1168 / 1171
页数:4
相关论文
共 50 条
  • [41] Automatic Mura Inspection Using the Principal Component Analysis for the TFT-LCD Panel
    Yun, Jun-Woo
    Gu, Heon
    Kim, Dae-Hwan
    Moon, Hoi-Sik
    Ko, Sung-Jea
    2014 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2014,
  • [42] Online identification of nonlinear system using reduced kernel principal component analysis
    Okba Taouali
    Ilyes Elaissi
    Hassani Messaoud
    Neural Computing and Applications, 2012, 21 : 161 - 169
  • [43] A novel online structure damage identification using principal component analysis (PCA)
    Hong, Soonyoung
    Shen, M. -H. Herman
    Proceedings of the ASME Power Conference 2007, 2007, : 367 - 374
  • [44] Identification of Linear Dynamic Systems using Dynamic Iterative Principal Component Analysis
    Maurya, Deepak
    Tangirala, Arun K.
    Narasimhan, Shankar
    IFAC PAPERSONLINE, 2016, 49 (07): : 1014 - 1019
  • [45] FAULT DETECTION AND IDENTIFICATION IN NPP INSTRUMENTS USING KERNEL PRINCIPAL COMPONENT ANALYSIS
    Ma, Jianping
    Jiang, Jin
    PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING 2010, VOL 1, 2011, : 765 - 771
  • [46] Identification of weak faint point sources by using principal component analysis.
    López-Alonso, JM
    Alda, J
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING IX, 2004, 5238 : 142 - 152
  • [47] Online identification of nonlinear system using reduced kernel principal component analysis
    Taouali, Okba
    Elaissi, Ilyes
    Messaoud, Hassani
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (01): : 161 - 169
  • [48] Identification of morphofunctional traits in Mangalarga Marchador horse using principal component analysis
    Meira, C. T.
    Pereira, I. G.
    Farah, M. M.
    Pires, A. V.
    Garcia, D. A.
    Cruz, V. A. R.
    ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2013, 65 (06) : 1843 - 1848
  • [49] Identification of freshwater zooplankton species using protein profiling and principal component analysis
    Hynek, Radovan
    Kuckova, Stepanka
    Cejnar, Pavel
    Junkova, Petra
    Prikryl, Ivo
    Ambrozova, Jana Rihova
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2018, 16 (03): : 199 - 204
  • [50] Identification of success clusters using principal component analysis for oil and gas industry
    Singh, Pawan Kumar
    Saxena, Deepak
    Kakade, Vijay
    INTERNATIONAL JOURNAL OF CONSTRUCTION MANAGEMENT, 2025,