ManiFest: Manifold Deformation for Few-Shot Image Translation

被引:3
|
作者
Pizzati, Fabio [1 ,2 ]
Lalonde, Jean-Francois [3 ]
de Charette, Raoul [1 ]
机构
[1] INRIA, Paris, France
[2] VisLab, Parma, Italy
[3] Univ Laval, Quebec City, PQ, Canada
来源
关键词
Image-to-image translation; Few-shot learning; Generative networks; Night generation; Adverse weather;
D O I
10.1007/978-3-031-19790-1_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most image-to-image translation methods require a large number of training images, which restricts their applicability. We instead proposeManiFest: a framework for few-shot image translation that learns a context-aware representation of a target domain from a few images only. To enforce feature consistency, our framework learns a style manifold between source and additional anchor domains (assumed to be composed of large numbers of images). The learned manifold is interpolated and deformed towards the few-shot target domain via patch-based adversarial and feature statistics alignment losses. All of these components are trained simultaneously during a single end-to-end loop. In addition to the general few-shot translation task, our approach can alternatively be conditioned on a single exemplar image to reproduce its specific style. Extensive experiments demonstrate the efficacy of ManiFest on multiple tasks, outperforming the state-of-the-art on all metrics. Our code is avaliable at https://github.com/cv-rits/ManiFest.
引用
收藏
页码:440 / 456
页数:17
相关论文
共 50 条
  • [41] Few-Shot Image Classification Along Sparse Graphs
    Comer, Joseph F.
    Jacobson, Philip L.
    Hoffmann, Heiko
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 4186 - 4194
  • [42] MTUNet: Few-shot Image Classification with Visual Explanations
    Wang, Bowen
    Li, Liangzhi
    Verma, Manisha
    Nakashima, Yuta
    Kawasaki, Ryo
    Nagahara, Hajime
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 2294 - 2298
  • [43] Channel Importance Matters in Few-Shot Image Classification
    Luo, Xu
    Xu, Jing
    Xu, Zenglin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [44] Self-Distillation for Few-Shot Image Captioning
    Chen, Xianyu
    Jiang, Ming
    Zhao, Qi
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 545 - 555
  • [45] Powerful embedding networks for few-shot image classification
    Luo, Laigan
    Zhou, Anan
    Yi, Benshun
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (06)
  • [46] Enhancing Few-Shot Image Classification with Unlabelled Examples
    Bateni, Peyman
    Barber, Jarred
    van de Meent, Jan-Willem
    Wood, Frank
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1597 - 1606
  • [47] CONTRASTIVE REPRESENTATION FOR DERMOSCOPY IMAGE FEW-SHOT CLASSIFICATION
    Mo Xuan
    Yang Qiang
    Zhang Xiyi
    Chen Juan
    Wen Quan
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 134 - 137
  • [48] Dataset Bias Prediction for Few-Shot Image Classification
    Kim, Jang Wook
    Kim, So Yeon
    Sohn, Kyung-Ah
    ELECTRONICS, 2023, 12 (11)
  • [49] Matching Feature Sets for Few-Shot Image Classification
    Afrasiyabi, Arman
    Larochelle, Hugo
    Lalonde, Jean-Francois
    Gagne, Christian
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9004 - 9014
  • [50] Gaussian Prototype Rectification For Few-shot Image Recognition
    Lin, Jinfu
    Shen, Junmin
    He, Xiaojian
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,