A Discontinuous Spectral Element Model for Boussinesq-Type Equations

被引:12
|
作者
Eskilsson, C. [1 ]
Sherwin, S. J. [2 ]
机构
[1] Chalmers, SE-41296 Gothenburg, Sweden
[2] Univ London Imperial Coll Sci Technol & Med, Dept Aeronaut, London SW7 2BY, England
关键词
Discontinuous spectral element method; Boussinesq-type equations;
D O I
10.1023/A:1015144429543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a discontinuous spectral element model for simulating 1D nonlinear dispersive water waves, described by a set of enhanced Boussinesq-type equations. The advective fluxes are calculated using an approximate Riemann solver while the dispersive fluxes are obtained by centred numerical fluxes. Numerical computation of solitary wave propagation is used to prove the exponential convergence.
引用
收藏
页码:143 / 152
页数:10
相关论文
共 50 条
  • [41] Domain walls to Boussinesq-type equations in (2 + 1)-dimensions
    H. Triki
    A. H. Kara
    A. Biswas
    [J]. Indian Journal of Physics, 2014, 88 : 751 - 755
  • [42] An extended form of Boussinesq-type equations for nonlinear water waves
    荆海晓
    刘长根
    陶建华
    [J]. Journal of Hydrodynamics, 2015, 27 (05) : 696 - 707
  • [43] Generalized Cauchy Matrix Approach for Lattice Boussinesq-Type Equations
    Songlin ZHAO 1 Dajun ZHANG 2 Ying SHI 21 Corresponding author.Department of Mathematics
    [J]. Chinese Annals of Mathematics,Series B, 2012, 33 (02) : 259 - 270
  • [44] Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations
    Erbay, H. A.
    Erbay, S.
    Erkip, A.
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2016, 23 (03) : 314 - 322
  • [45] Boussinesq-type modelling using an unstructured finite element technique
    Sorensen, OR
    Schäffer, HA
    Sorensen, LS
    [J]. COASTAL ENGINEERING, 2004, 50 (04) : 181 - 198
  • [46] Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations
    H. A. Erbay
    S. Erbay
    A. Erkip
    [J]. Journal of Nonlinear Mathematical Physics, 2016, 23 : 314 - 322
  • [47] An extended form of Boussinesq-type equations for nonlinear water waves
    Hai-xiao Jing
    Chang-gen Liu
    Jian-hua Tao
    [J]. Journal of Hydrodynamics, 2015, 27 : 696 - 707
  • [48] Generalized Cauchy matrix approach for lattice Boussinesq-type equations
    Zhao, Songlin
    Zhang, Dajun
    Shi, Ying
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2012, 33 (02) : 259 - 270
  • [49] NEARSHORE COMPOUND SIMULATION BY A BOUSSINESQ-TYPE WAVE MODEL
    Klonaris, Georgios Th.
    Memos, Constantine D.
    Makris, Christos V.
    [J]. PROCEEDINGS OF THE 36TH IAHR WORLD CONGRESS: DELTAS OF THE FUTURE AND WHAT HAPPENS UPSTREAM, 2015, : 7129 - 7140
  • [50] A GPU accelerated Boussinesq-type model for coastal waves
    Kezhao Fang
    Jiawen Sun
    Guangchun Song
    Gang Wang
    Hao Wu
    Zhongbo Liu
    [J]. Acta Oceanologica Sinica, 2022, 41 (09) : 158 - 168