共 50 条
Gene therapy strategies in the treatment of hypertrophic cardiomyopathy
被引:49
|作者:
Prondzynski, Maksymilian
[1
,2
]
Mearini, Giulia
[1
,2
]
Carrier, Lucie
[1
,2
]
机构:
[1] Univ Med Ctr Hamburg Eppendorf, Inst Expt Pharmacol & Toxicol, Hamburg, Germany
[2] DZHK German Ctr Cardiovasc Res, Partner Site Hamburg Kiel Lubeck, Hamburg, Germany
来源:
关键词:
Hypertrophic cardiomyopathy;
Gene therapy;
Exon skipping;
trans-splicing;
CRISPR;
Cas9;
MYBPC3;
Gene replacement;
BINDING-PROTEIN-C;
CALCIUM UP-REGULATION;
SUDDEN-DEATH;
DISEASE;
MUTATION;
MYBPC3;
DELIVERY;
CRISPR/CAS9;
PHENOTYPE;
DIAGNOSIS;
D O I:
10.1007/s00424-018-2173-5
中图分类号:
Q4 [生理学];
学科分类号:
071003 ;
摘要:
Hypertrophic cardiomyopathy (HCM) is an inherited myocardial disease with an estimated prevalence of 1:200 caused by mutations in sarcomeric proteins. It is associated with hypertrophy of the left ventricle, increased interstitial fibrosis, and diastolic dysfunction for heterozygous mutation carriers. Carriers of double heterozygous, compound heterozygous, and homozygous mutations often display more severe forms of cardiomyopathies, ultimately leading to premature death. So far, there is no curative treatment against HCM, as current therapies are focused on symptoms relief by pharmacological intervention and not on the cause of HCM. In the last decade, several strategies have been developed to remove genetic defects, including genome editing, exon skipping, allele-specific silencing, spliceosome-mediated RNA trans-splicing, and gene replacement. Most of these technologies have already been tested for efficacy and efficiency in animal- or human-induced pluripotent stem cell models of HCM with promising results. We will summarize recent technological advances and their implication as gene therapy options in HCM with a special focus on treating MYBPC3 mutations and its potential for being a successful bench to bedside example.
引用
收藏
页码:807 / 815
页数:9
相关论文