Mode I fracture of epoxy bonded composite joints - 2. Fatigue loading

被引:79
|
作者
Ashcroft, IA [1 ]
Shaw, SJ
机构
[1] Loughborough Univ Technol, Wolfson Sch Mech & Mfg Engn, Dept Mech Engn, Loughborough LE11 3TU, Leics, England
[2] Def Evaluat & Res Agcy, Struct Mat Ctr, Farnborough GU14 0LX, Hants, England
关键词
epoxides; composites; fracture mechanics; fatigue; environmental issues;
D O I
10.1016/S0143-7496(01)00050-1
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The main aims of this work were to investigate the effect of temperature on fatigue crack propagation (FCP) in bonded joints and to compare this with fracture under quasi-static loading and fatigue failure in uncracked lap joints. The fatigue tests were conducted on epoxy bonded carbon fibre reinforced polymer joints at -50degreesC, 22degreesC and 90degreesC and a number of techniques for determining strain energy release rate and crack propagation rate were evaluated. It was seen that temperature had a significant effect on the locus of failure and FCP, indicating that service temperature must be taken into account when designing bonded composite joints. The applicability of fracture mechanics data to the prediction of fatigue failure in uncracked lap joints was assessed by attempting to predict fatigue thresholds in two types of lap joints at three different temperatures. In most cases reasonable predictions were made, the notable exception being the overprediction of the fatigue threshold load in double lap joints tested at 90degreesC. This was attributed to creep in the double lap joints, which accelerated fatigue failure. It was recommended that in order to improve current prediction techniques, efforts should be made to base predictive methods on accurate physical models of the degradation and failure processes in the joints. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:151 / 167
页数:17
相关论文
共 50 条
  • [21] Effect of moisture on pure mode I and II fracture behaviour of composite bonded joints
    Fernandes, R. L.
    de Moura, M. F. S. F.
    Moreira, R. D. F.
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2016, 68 : 30 - 38
  • [22] Mixed-mode I plus II fracture characterisation of composite bonded joints
    Moreira, R. D. F.
    de Moura, M. F. S. F.
    Silva, F. G. A.
    Ramirez, F. M. G.
    Rodrigues, J. S.
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2020, 34 (13) : 1385 - 1398
  • [23] Mode I fracture toughness of co-cured and secondary bonded composite joints
    Mohan, J.
    Ivankovic, A.
    Murphy, N.
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2014, 51 : 13 - 22
  • [24] Mode I and II fracture behavior of adhesively-bonded pultruded composite joints
    Zhang, Ye
    Vassilopoulos, Anastasios P.
    Keller, Thomas
    ENGINEERING FRACTURE MECHANICS, 2010, 77 (01) : 128 - 143
  • [25] Mode i fracture toughness of co-cured and secondary bonded composite joints
    20141117450442
    Murphy, N. (neal.murphy@ucd.ie), 1600, Elsevier Ltd (51):
  • [26] A novel strategy to obtain the fracture envelope under mixed-mode I plus II loading of composite bonded joints
    Moreira, R. D. F.
    de Moura, M. F. S. F.
    Silva, F. G. A.
    ENGINEERING FRACTURE MECHANICS, 2020, 232
  • [27] Pure mode II fracture characterization of composite bonded joints
    de Moura, M. F. S. F.
    Campilho, R. D. S. G.
    Goncalves, J. P. M.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (06) : 1589 - 1595
  • [28] Distributed backface strain sensing of composite adhesively bonded joints under mode II fatigue loading
    Panerai, A.
    Oneda, B.
    Martulli, L. M.
    Bernasconi, A.
    Carboni, M.
    COMPOSITES PART B-ENGINEERING, 2025, 291
  • [29] Evaluation of mode II fracture toughness under high loading rate conditions for composite bonded joints
    Feng, Wei
    Li, Zhouyi
    Liu, Bin
    Zhang, Chao
    JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY, 2023, 37 (13) : 1983 - 1996
  • [30] Interlaminar fracture toughness of metal/composite bonded joints under high-speed mode I loading considering the elastic vibration
    Kotsinis, Georgios
    Chatzaki, Zoi
    Sotiriadis, George
    Loutas, Theodoros
    COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 258