Mode I fracture of epoxy bonded composite joints - 2. Fatigue loading

被引:79
|
作者
Ashcroft, IA [1 ]
Shaw, SJ
机构
[1] Loughborough Univ Technol, Wolfson Sch Mech & Mfg Engn, Dept Mech Engn, Loughborough LE11 3TU, Leics, England
[2] Def Evaluat & Res Agcy, Struct Mat Ctr, Farnborough GU14 0LX, Hants, England
关键词
epoxides; composites; fracture mechanics; fatigue; environmental issues;
D O I
10.1016/S0143-7496(01)00050-1
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The main aims of this work were to investigate the effect of temperature on fatigue crack propagation (FCP) in bonded joints and to compare this with fracture under quasi-static loading and fatigue failure in uncracked lap joints. The fatigue tests were conducted on epoxy bonded carbon fibre reinforced polymer joints at -50degreesC, 22degreesC and 90degreesC and a number of techniques for determining strain energy release rate and crack propagation rate were evaluated. It was seen that temperature had a significant effect on the locus of failure and FCP, indicating that service temperature must be taken into account when designing bonded composite joints. The applicability of fracture mechanics data to the prediction of fatigue failure in uncracked lap joints was assessed by attempting to predict fatigue thresholds in two types of lap joints at three different temperatures. In most cases reasonable predictions were made, the notable exception being the overprediction of the fatigue threshold load in double lap joints tested at 90degreesC. This was attributed to creep in the double lap joints, which accelerated fatigue failure. It was recommended that in order to improve current prediction techniques, efforts should be made to base predictive methods on accurate physical models of the degradation and failure processes in the joints. (C) 2002 Published by Elsevier Science Ltd.
引用
收藏
页码:151 / 167
页数:17
相关论文
共 50 条
  • [1] Composite bonded joints under mode I fatigue loading
    Fernandez, M. V.
    de Moura, M. F. S. F.
    da Silva, L. F. M.
    Marques, A. T.
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2011, 31 (05) : 280 - 285
  • [2] Mode I fracture of epoxy bonded composite joints: 1. Quasi-static loading
    Ashcroft, IA
    Hughes, DJ
    Shaw, SJ
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2001, 21 (02) : 87 - 99
  • [3] Mixed-mode fracture of adhesively bonded CF/epoxy composite joints
    Daghyani, HR
    Ye, L
    Mai, YW
    JOURNAL OF COMPOSITE MATERIALS, 1996, 30 (11) : 1248 - 1265
  • [4] Numerical and experimental analyses of the fatigue threshold of composite bonded joints under pure mode I loading
    de Moura, M. F. S. F.
    Silva, F. G. A.
    Moreira, R. D. F.
    ENGINEERING FRACTURE MECHANICS, 2025, 317
  • [5] Fatigue/fracture characterization of composite bonded joints under mode I, mode II and mixed-mode I plus II
    de Moura, M. F. S. F.
    Goncalves, J. P. M.
    Fernandez, M. V.
    COMPOSITE STRUCTURES, 2016, 139 : 62 - 67
  • [6] Fracture analysis of composite-titanium adhesively bonded joints under mode-I loading
    Wang, Jian
    Ding, Huiming
    Jiang, Junxia
    Bi, Yunbo
    ENGINEERING FRACTURE MECHANICS, 2023, 291
  • [7] Development of a cohesive zone model for fatigue/fracture characterization of composite bonded joints under mode II loading
    de Moura, M. F. S. F.
    Goncalves, J. P. M.
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2014, 54 : 224 - 230
  • [8] Development of a cohesive zone model for fatigue/fracture characterization of composite bonded joints under mode II loading
    De Moura, M.F.S.F.
    Gonçalves, J.P.M.
    International Journal of Adhesion and Adhesives, 2014, 54 : 224 - 230
  • [9] Cohesive laws of composite bonded joints under mode I loading
    Dias, G. F.
    de Moura, M. F. S. F.
    Chousal, J. A. G.
    Xavier, J.
    COMPOSITE STRUCTURES, 2013, 106 : 646 - 652
  • [10] Characterization of composite bonded joints under pure mode II fatigue loading
    Fernandez, Maria V.
    de Moura, Marcelo F. S. F.
    da Silva, Lucas F. M.
    Marques, Antonio T.
    COMPOSITE STRUCTURES, 2013, 95 : 222 - 226