Can we make a robot ballerina perform a pirouette? Orbital stabilization of periodic motions of underactuated mechanical systems

被引:62
|
作者
Shiriaev, A. S. [1 ,2 ]
Freidovich, L. B. [1 ]
Manchester, I. R. [1 ]
机构
[1] Umea Univ, Dept Appl Phys & Elect, SE-90187 Umea, Sweden
[2] Norwegian Univ Sci & Technol, Dept Engn Cybernet, NO-7491 Trondheim, Norway
关键词
Periodic motion planning; Poincare first-return map; Orbital stabilization; Transverse linearization; Virtual holonomic constraints;
D O I
10.1016/j.arcontrol.2008.07.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper provides an introduction to several problems and techniques related to controlling periodic motions of dynamical systems. In particular, we consider planning periodic motions and designing feedback controllers for orbital stabilization. We review classical and recent design methods based on the Poincare first-return map and the transverse linearization. We begin with general nonlinear systems and then specialize to a class of underactuated mechanical systems for which a particularly rich structure allows many of the problems to be solved analytically. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:200 / 211
页数:12
相关论文
共 11 条
  • [1] Excessive Transverse Coordinates for Orbital Stabilization of (Underactuated) Mechanical Systems
    Saetre, Christian Fredrik
    Shiriaev, Anton
    Pchelkin, Stepan
    Chemori, Ahmed
    [J]. 2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 895 - 900
  • [2] A Constructive Procedure for Orbital Stabilization of a Class of Underactuated Mechanical Systems
    Romero, Jose Guadalupe
    Gandarilla, Isaac
    Santibanez, Victor
    Yi, Bowen
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (06) : 2698 - 2706
  • [3] Orbital stabilization of point-to-point maneuvers in underactuated mechanical systems
    Saetre, Christian Fredrik
    Shiriaev, Anton
    [J]. AUTOMATICA, 2023, 147
  • [4] Orbital Stabilization of Point-to-Point Maneuvers in Underactuated Mechanical Systems
    Sætre, Christian Fredrik
    Shiriaev, Anton S.
    [J]. arXiv, 2021,
  • [5] Nonlinear orbital H∞-stabilization of underactuated mechanical systems with unilateral constraints
    Montano, Oscar
    Orlov, Yury
    Aoustin, Yannick
    Chevallereau, Christine
    [J]. 2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 806 - 811
  • [6] Underactuated mechanical systems: Whether orbital stabilization is an adequate assignment for a controller design?
    Mamedov, Sh
    Khusainov, R.
    Gusev, S.
    Klimchik, A.
    Maloletov, A.
    Shiriaev, A.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 9262 - 9269
  • [7] Immersion and invariance orbital stabilization of underactuated mechanical systems with collocated pre-feedback
    Romero, Jose Guadalupe
    Yi, Bowen
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (14) : 9421 - 9437
  • [8] Path following of a class of underactuated mechanical systems via immersion and invariance-based orbital stabilization
    Yi, Bowen
    Ortega, Romeo
    Manchester, Ian R.
    Siguerdidjane, Houria
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (18) : 8521 - 8544
  • [9] Robust output-feedback orbital stabilization for underactuated mechanical systems via high-order sliding modes
    deLoza, A. Ferreira
    Ortega-Perez, J. A.
    Aguilar, L. T.
    Galvan-Guerra, R.
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2023, 49
  • [10] Robust Event-based Stabilization of Periodic Orbits for Hybrid Systems: Application to an Underactuated 3D Bipedal Robot
    Hamed, Kaveh Akbari
    Grizzle, J. W.
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 6206 - 6212