Increase of Boltzmann entropy in a quantum forced harmonic oscillator

被引:21
|
作者
Campisi, Michele [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 05期
关键词
D O I
10.1103/PhysRevE.78.051123
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Recently, a quantum-mechanical proof of the increase of Boltzmann entropy in quantum systems that are coupled to an external classical source of work has been given. Here we illustrate this result by applying it to a forced quantum harmonic oscillator. We show plots of the actual temporal evolution of work and entropy for various forcing protocols. We note that entropy and work can be partially or even fully returned to the source, although both work and entropy balances are non-negative at all times in accordance with the minimal work principle and the Clausius principle, respectively. A necessary condition for the increase of entropy is that the initial distribution is decreasing (e.g., canonical). We show evidence that for a nondecreasing distribution (e.g., microcanonical), the quantum expectation of entropy may decrease slightly. Interestingly, the classical expectation of entropy cannot decrease, irrespective of the initial distribution, in the forced harmonic oscillator.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Quantum harmonic oscillator fluorescence
    Boye, Daniel M.
    Cain, Laurence
    Belloni, Mario
    Friedensen, Sarah
    Pruett, Nancy
    Brooks, Henry
    FIFTEENTH CONFERENCE ON EDUCATION AND TRAINING IN OPTICS AND PHOTONICS (ETOP 2019), 2019, 11143
  • [22] Quaternionic quantum harmonic oscillator
    Giardino, Sergio
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (01):
  • [23] Subnormality in the Quantum Harmonic Oscillator
    Franciszek Hugon Szafraniec
    Communications in Mathematical Physics, 2000, 210 : 323 - 334
  • [24] KAM for the Quantum Harmonic Oscillator
    Benoît Grébert
    Laurent Thomann
    Communications in Mathematical Physics, 2011, 307 : 383 - 427
  • [25] Subnormality in the quantum harmonic oscillator
    Szafraniec, FH
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (02) : 323 - 334
  • [26] The bicomplex quantum harmonic oscillator
    Lavoie, R. Gervais
    Marchildon, L.
    Rochon, D.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2010, 125 (10): : 1173 - 1192
  • [27] QUANTUM DISSIPATIVE HARMONIC OSCILLATOR
    Imranov, Fariz B.
    Jafarova, Aynura M.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2013, 39 (47): : 157 - 164
  • [28] Duality in the quantum harmonic oscillator
    Szafraniec, FH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48): : 10487 - 10492
  • [29] KAM for the Quantum Harmonic Oscillator
    Grebert, Benoit
    Thomann, Laurent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (02) : 383 - 427
  • [30] Discrete Quantum Harmonic Oscillator
    Dobrogowska, Alina
    Fernandez C, David J.
    SYMMETRY-BASEL, 2019, 11 (11):