Dirichlet problem with p(x)-Laplacian

被引:0
|
作者
Ilias, Petre Sorin [1 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Bucharest 010014, Romania
来源
MATHEMATICAL REPORTS | 2008年 / 10卷 / 01期
关键词
p(x)-laplacian; generalized Lebesgue-Sobolev space; critical points; surjectivity theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give several sufficient conditions for the existence of weak solutions for the Dirichlet problem with p(x)-laplacian { -Delta(p(x))u = f(x, u) in Omega u = 0 on partial derivative Omega, where Omega is a bounded domain in R-N, p(x) a continuous function defined on (Omega) over bar with p(x) > 1 for all x epsilon (Omega) over bar and f : Omega x R -> R a Caratheodory function.
引用
收藏
页码:43 / 56
页数:14
相关论文
共 50 条
  • [41] On a class of p(x)-Laplacian-like Dirichlet problem depending on three real parameters
    Mohamed El Ouaarabi
    Chakir Allalou
    Said Melliani
    Arabian Journal of Mathematics, 2022, 11 : 227 - 239
  • [42] WEAK SOLUTION FOR FRACTIONAL p(x)-LAPLACIAN PROBLEM WITH DIRICHLET-TYPE BOUNDARY CONDITION
    Sabri, Abdelali
    Jamea, Ahmed
    Alaoui, Hamad Talibi
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (03): : 272 - 282
  • [43] INFINITELY MANY SOLUTIONS TO THE DIRICHLET PROBLEM FOR QUASILINEAR ELLIPTIC SYSTEMS INVOLVING THE P(X) AND Q(X)-LAPLACIAN
    Moschetto, Danila Sandra
    MATEMATICHE, 2008, 63 (01): : 223 - 233
  • [44] Two positive solutions for a Dirichlet problem with the (p,q)-Laplacian
    Sciammetta, Angela
    Tornatore, Elisabetta
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (05) : 1004 - 1013
  • [45] Hemivariational inequalities governed by the p-Laplacian -: Dirichlet problem
    Naniewicz, Z
    CONTROL AND CYBERNETICS, 2004, 33 (02): : 181 - 210
  • [46] Multiplicity theorems for the Dirichlet problem involving the p-Laplacian
    Bonanno, G
    Livrea, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (01) : 1 - 7
  • [47] ON COMPETING (p, q )- LAPLACIAN DIRICHLET PROBLEM WITH UNBOUNDED WEIGHT
    Diblik, Josef
    Galewski, Marek
    Kossowski, Igor
    Motreanu, Dumitru
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2025, 38 (1-2) : 23 - 42
  • [48] Nontrivial solution for asymmetric (p,2)-Laplacian Dirichlet problem
    Ruichang Pei
    Jihui Zhang
    Boundary Value Problems, 2014
  • [49] Multiple solutions for a dirichlet problem involving the p-Laplacian
    Cammaroto, F.
    Chinni, A.
    Di Bella, B.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2007, 16 (04): : 673 - 679
  • [50] MULTIPLE SOLUTIONS TO A DIRICHLET EIGENVALUE PROBLEM WITH p-LAPLACIAN
    Marano, Salvatore A.
    Motreanu, Dumitru
    Puglisi, Daniele
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 42 (02) : 277 - 291