On the generation and pruning of skeletons using generalized Voronoi diagrams

被引:21
|
作者
Liu, Hongzhi [1 ,4 ,5 ]
Wu, Zhonghai [1 ,2 ]
Hsu, D. Frank [3 ]
Peterson, Bradley S. [4 ,5 ]
Xu, Dongrong [4 ,5 ]
机构
[1] Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Software & Microelect, Beijing 102600, Peoples R China
[3] Fordham Univ, Dept Comp & Informat Sci, New York, NY 10023 USA
[4] Columbia Univ, MRI Unit, Dept Psychiat, New York, NY 10032 USA
[5] New York State Psychiat Inst & Hosp, New York, NY 10032 USA
关键词
Skeletonization; Generalized Voronoi diagram; Skeleton pruning; Reconstruction contribution; Visual contribution; Generalized Voronoi skeleton (GVS); DISTANCE MAPS; POLYGONAL-APPROXIMATION; ALGORITHM; CURVES; SHAPE; EXTRACTION; EVOLUTION; IMAGES; BINARY;
D O I
10.1016/j.patrec.2012.07.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeletonization is a necessary process in a variety of applications in image processing and object recognition. However, the concept of a skeleton, defined using either the union of centers of maximal discs or the union of points with more than one generating points, was originally formulated in continuous space. When they are applied to situation in discrete space, the resulting skeletons may become disconnected and further works are needed to link them. In this paper, we propose a novel skeletonization method which extends the concept of a skeleton to include both continuous and discrete space using generalized Voronoi diagrams. We also present a skeleton pruning method which is able to remove noisy branches by evaluating their significance. Three experimental results demonstrate that: (1) our method is stable across a wide range of shapes, and (2) it performs better in accuracy and robustness than previous approaches for processing shapes whose boundaries contain substantial noise. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2113 / 2119
页数:7
相关论文
共 50 条
  • [41] VORONOI DIAGRAMS AND ARRANGEMENTS
    EDELSBRUNNER, H
    SEIDEL, R
    DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (01) : 25 - 44
  • [42] Skew Voronoi diagrams
    Aichholzer, O
    Aurenhammer, F
    Chen, DZ
    Lee, DT
    Papadopoulou, E
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1999, 9 (03) : 235 - 247
  • [43] DYNAMIC VORONOI DIAGRAMS
    GOWDA, IG
    KIRKPATRICK, DG
    LEE, DT
    NAAMAD, A
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1983, 29 (05) : 724 - 731
  • [44] Semi Voronoi Diagrams
    Cheng, Yongxi
    Li, Bo
    Xu, Yinfeng
    COMPUTATIONAL GEOMETRY, GRAPHS AND APPLICATIONS, 2011, 7033 : 19 - +
  • [45] Bregman Voronoi Diagrams
    Jean-Daniel Boissonnat
    Frank Nielsen
    Richard Nock
    Discrete & Computational Geometry, 2010, 44 : 281 - 307
  • [46] SIMPLIFIED VORONOI DIAGRAMS
    CANNY, J
    DONALD, B
    DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (03) : 219 - 236
  • [47] Voronoi diagrams on the sphere
    Na, HS
    Lee, CN
    Cheong, O
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2002, 23 (02): : 183 - 194
  • [48] Bregman Voronoi Diagrams
    Boissonnat, Jean-Daniel
    Nielsen, Frank
    Nock, Richard
    DISCRETE & COMPUTATIONAL GEOMETRY, 2010, 44 (02) : 281 - 307
  • [49] Voronoi Diagrams on orbifolds
    Dpto. Matemáticas, Estadística y Comp., Universidad de Cantabria, Santander 39071, Spain
    Comput Geom Theory Appl, 5 (219-230):
  • [50] Recursive Voronoi diagrams
    Boots, B
    Shiode, N
    ENVIRONMENT AND PLANNING B-PLANNING & DESIGN, 2003, 30 (01): : 113 - 124