Saliency Hierarchy Modeling via Generative Kernels for Salient Object Detection

被引:8
|
作者
Zhang, Wenhu [1 ]
Zheng, Liangli [2 ]
Wang, Huanyu [3 ]
Wu, Xintian [3 ]
Li, Xi [3 ,4 ,5 ]
机构
[1] Zhejiang Univ, Polytech Inst, Hangzhou, Peoples R China
[2] Zhejiang Univ, Sch Software Technol, Hangzhou, Peoples R China
[3] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Peoples R China
[4] Zhejiang Univ, Shanghai Inst Adv Study, Hangzhou, Peoples R China
[5] Shanghai AI Lab, Hangzhou, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Salient object detection; Saliency hierarchy modeling; Region-level; Sample-level; Generative kernel; NETWORK;
D O I
10.1007/978-3-031-19815-1_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Salient Object Detection (SOD) is a challenging problem that aims to precisely recognize and segment the salient objects. In ground-truth maps, all pixels belonging to the salient objects are positively annotated with the same value. However, the saliency level should be a relative quantity, which varies among different regions in a given sample and different samples. The conflict between various saliency levels and single saliency value in ground-truth, results in learning difficulty. To alleviate the problem, we propose a Saliency Hierarchy Network (SHNet), modeling saliency patterns via generative kernels from two perspectives: region-level and sample-level. Specifically, we construct a Saliency Hierarchy Module to explicitly model saliency levels of different regions in a given sample with the guide of prior knowledge. Moreover, considering the sample-level divergence, we introduce a Hyper Kernel Generator to capture the global contexts and adaptively generate convolution kernels for various inputs. As a result, extensive experiments on five standard benchmarks demonstrate our SHNet outperforms other state-of-the-art methods in both terms of performance and efficiency.
引用
收藏
页码:570 / 587
页数:18
相关论文
共 50 条
  • [31] RGB-D Salient Object Detection via Minimum Barrier Distance Transform and Saliency Fusion
    Wang, Anzhi
    Wang, Minghui
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (05) : 663 - 667
  • [32] RGB-T salient object detection via CNN feature and result saliency map fusion
    Chang Xu
    Qingwu Li
    Mingyu Zhou
    Qingkai Zhou
    Yaqin Zhou
    Yunpeng Ma
    Applied Intelligence, 2022, 52 : 11343 - 11362
  • [33] RGB-T salient object detection via CNN feature and result saliency map fusion
    Xu, Chang
    Li, Qingwu
    Zhou, Mingyu
    Zhou, Qingkai
    Zhou, Yaqin
    Ma, Yunpeng
    APPLIED INTELLIGENCE, 2022, 52 (10) : 11343 - 11362
  • [34] Region Diversity Based Saliency Density Maximization for Salient Object Detection
    He, Xin
    Jing, Huiyun
    Han, Qi
    Niu, Xiamu
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (01) : 394 - 397
  • [35] Weakly-Supervised Salient Object Detection With Saliency Bounding Boxes
    Liu, Yuxuan
    Wang, Pengjie
    Cao, Ying
    Liang, Zijian
    Lau, Rynson W. H.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 4423 - 4435
  • [36] Texture-guided Saliency Distilling for Unsupervised Salient Object Detection
    Zhou, Huajun
    Qiao, Bo
    Yang, Lingxiao
    Lai, Jianhuang
    Xie, Xiaohua
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 7257 - 7267
  • [37] Unsupervised Multi-Subclass Saliency Classification for Salient Object Detection
    Pang, Yu
    Wu, Chengdong
    Wu, Hao
    Yu, Xiaosheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2189 - 2202
  • [38] Saliency-Guided Object Proposal for Refined Salient Region Detection
    Wang, Chunlai
    Yang, Bin
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,
  • [39] Weakly-Supervised Salient Object Detection with Saliency Bounding Boxes
    Liu, Yuxuan
    Wang, Pengjie
    Cao, Ying
    Liang, Zijian
    Lau, Rynson W. H.
    IEEE Transactions on Image Processing, 2021, 30 : 4423 - 4435
  • [40] Stage-wise Salient Object Detection in 360° Omnidirectional Image via Object-level Semantical Saliency Ranking
    Ma, Guangxiao
    Li, Shuai
    Chen, Chenglizhao
    Hao, Aimin
    Qin, Hong
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (12) : 3535 - 3545