Parameter Optimization Model of Heuristic Algorithms for Controller Placement Problem in Large-Scale SDN

被引:10
|
作者
Li, Yi [1 ]
Guan, Shaopeng [1 ]
Zhang, Conghui [1 ]
Sun, Wenwen [1 ]
机构
[1] Shandong Technol & Business Univ, Sch Informat & Elect Engn, Yantai 264005, Peoples R China
基金
中国国家自然科学基金;
关键词
Controller placement problem; delay; heuristic algorithm; parameter optimization; particle swarm optimization; software defined network;
D O I
10.1109/ACCESS.2020.3017673
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Controller Placement Problem (CPP) is a key technical challenge in a large-scale Software Defined Network (SDN). Low-complexity heuristic algorithm is widely used for solving the CPP. However, parameter settings of the heuristic algorithm greatly affect the result of the CPP. Therefore, we establish a Parameter Optimization Model (POM) for the heuristic algorithm applied to the CPP. The heuristic algorithm can effectively solve the CPP by using the optimized parameters obtained in POM. To verify the effectiveness of the POM, we first establish a synthetical-delay controller placement model to reduce the delay between the controllers and the switches and the delay between the controllers. Further, we select the bat algorithm, the firefly algorithm, and the varna-based optimization respectively to solve the model, and use the particle swarm optimization method to optimize the parameters of the three algorithms. Experimental results on real topologies show that compared with original algorithms and other similar algorithms, the algorithms with optimized parameters perform better.
引用
收藏
页码:151668 / 151680
页数:13
相关论文
共 50 条
  • [41] Optimization algorithms for large-scale real-world instances of the frequency assignment problem
    Francisco Luna
    César Estébanez
    Coromoto León
    José M. Chaves-González
    Antonio J. Nebro
    Ricardo Aler
    Carlos Segura
    Miguel A. Vega-Rodríguez
    Enrique Alba
    José M. Valls
    Gara Miranda
    Juan A. Gómez-Pulido
    Soft Computing, 2011, 15 : 975 - 990
  • [42] Large-scale magnetic target state estimation using model parameter optimization
    Lu, Binjie
    Zhang, Xiaobing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [43] Optimization of a large-scale biorefinery problem by decomposition
    Punnathanam, Varun
    Shastri, Yogendra
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2019, 46 : 829 - 834
  • [44] An optimization framework for parameter estimation of large-scale systems
    Faber, Richard
    Arellano-Garcia, Harvey
    Li, Pu
    Wozny, Guenter
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2007, 46 (11) : 1085 - 1095
  • [45] Performance comparison of QoS routing algorithms applicable to large-scale SDN networks
    Tomovic, Slavica
    Radusinovic, Igor
    Prasad, Neeli
    IEEE EUROCON 2015 - INTERNATIONAL CONFERENCE ON COMPUTER AS A TOOL (EUROCON), 2015, : 172 - 177
  • [46] Algorithm 896: LSA: Algorithms for Large-Scale Optimization
    Luksan, Ladislav
    Matonoha, Ctirad
    Vlcek, Jan
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2009, 36 (03):
  • [48] Performance analysis of algorithms for Large-Scale Nonlinear Optimization
    Jiang, Aipeng
    Huang, Jingtao
    Jiang, Zhoushu
    Wang, Jian
    Huang, Guohui
    Ding, Qiang
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 7333 - +
  • [49] A comparative study of large-scale nonlinear optimization algorithms
    Benson, HY
    Shanno, DF
    Vanderbei, RJ
    HIGH PERFORMANCE ALGORITHMS AND SOFTWARE FOR NONLINEAR OPTIMIZATION, 2003, 82 : 95 - 127
  • [50] Evolutionary Large-Scale Multiobjective Optimization: Benchmarks and Algorithms
    Liu, Songbai
    Lin, Qiuzhen
    Wong, Ka-Chun
    Li, Qing
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (03) : 401 - 415