Kernel nonparametric weighted feature extraction for classification

被引:0
|
作者
Kuo, BC
Li, CH
机构
[1] Natl Taichung Univ, Grad Sch Educ Measurements & Stat, Taichung, Taiwan
[2] Natl Chung Hsing Univ, Dept Appl Math, Taichung 40227, Taiwan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Usually feature extraction is applied for dimension reduction in hyperspectral data classification problems. Many researches show that nonparametric weighted feature extraction (NWFE) is a powerful tool for extracting hyperspectral image features and kernel-based methods are computationally efficient, robust and stable for pattern analysis. In this paper, a kernel-based NWFE is proposed and a real data experiment is conducted for evaluating its performance. The experimental result shows that the proposed method outperforms original NWFE when the size training samples is large enough.
引用
收藏
页码:567 / 576
页数:10
相关论文
共 50 条
  • [31] Linear Discriminant Feature Extraction Using Weighted Classification Confusion Information
    Lee, Hung-Shin
    Chen, Berlin
    [J]. INTERSPEECH 2008: 9TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2008, VOLS 1-5, 2008, : 2254 - 2257
  • [32] Feature weighted multiple kernel learning
    Wang, Tinghua
    Liu, Fulai
    Yan, Shenhai
    Chen, Junting
    [J]. Journal of Computational and Theoretical Nanoscience, 2015, 12 (11) : 4755 - 4760
  • [33] Nonparametric Decentralized Detection Based on Weighted Count Kernel
    Hu, Jiayao
    Liang, Yingbin
    Xing, Eric P.
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012, : 324 - 328
  • [34] Feature extraction for nonparametric discriminant analysis
    Zhu, M
    Hastie, TJ
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (01) : 101 - 120
  • [35] NONPARAMETRIC REGRESSION - KERNEL METHODS AND WEIGHTED LOCAL REGRESSION
    ELFAOUZI, NE
    SARDA, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (01): : 69 - 72
  • [36] Kernel-based relevant feature extraction to support motor imagery classification
    Arias-Mora, L.
    Lopez-Rios, L.
    Cespedes-Villar, Y.
    Velasquez-Martinez, L. F.
    Alvarez-Meza, A. M.
    Castellanos-Dominguez, G.
    [J]. 2015 20TH SYMPOSIUM ON SIGNAL PROCESSING, IMAGES AND COMPUTER VISION (STSIVA), 2015,
  • [37] Weighted Sparse Representation Using Collaborative Representation in Kernel Feature Space Based Classification
    Matsushima, Kousuke
    Matsusue, Mihoshi
    Ruengprateepsang, Kavin
    [J]. JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2021, 12 (03) : 220 - 225
  • [38] SQL Injection Attack classification through the feature extraction of SQL query strings using a Gap-Weighted String Subsequence Kernel
    McWhirter, Paul R.
    Kifayat, Kashif
    Shi, Qi
    Askwith, Bob
    [J]. JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2018, 40 : 199 - 216
  • [39] A Nonparametric Feature Extraction and Its Application to Nearest Neighbor Classification for Hyperspectral Image Data
    Yang, Jinn-Min
    Yu, Pao-Ta
    Kuo, Bor-Chen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (03): : 1279 - 1293
  • [40] Sequential combination of weighted and nonparametric bagging for classification
    Soleymani, M.
    Lee, S. M. S.
    [J]. BIOMETRIKA, 2014, 101 (02) : 491 - 498