Life Evaluation for Carbon Fiber Composite Material by Using Integral Best Linear Unbiased Estimation

被引:0
|
作者
Wang Jingyu [1 ]
Ma Xiaobing [1 ]
Wang Tingting [1 ]
机构
[1] Beihang Univ, Sch Reliabil & Syst Engn, Beijing 100191, Peoples R China
关键词
Type-I censored data; Integral best linear unbiased estimation; Interval statistic; Weibull distribution;
D O I
暂无
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Combined with interval statistic, we present the integral estimation method and establish a regression equation for type-I censored data in this paper. The best unbiased estimators of parameters, standard deviation and their covariance are also given. We discuss the confidence limits of the acceleration equation and percentiles for Weibull distribution in detail. According to the presented method, the cross information among test data in different stresses are analyzed as an integration. Its information quantity is much bigger than traditional group test method.
引用
收藏
页码:1181 / 1184
页数:4
相关论文
共 50 条
  • [1] Constrained Best Linear and Widely Linear Unbiased Estimation
    Lang, Oliver
    Onic, Alexander
    Steindl, Markus
    Huemer, Mario
    [J]. 2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 1748 - 1752
  • [2] BEST LINEAR UNBIASED ESTIMATION FOR THE WEIBULL PROCESS
    HARTLER, G
    [J]. MICROELECTRONICS AND RELIABILITY, 1994, 34 (07): : 1253 - 1260
  • [3] Best Linear Unbiased Estimation of the nuclear masses
    Bouriquet, Bertrand
    Argaud, Jean-Philippe
    [J]. ANNALS OF NUCLEAR ENERGY, 2011, 38 (09) : 1863 - 1866
  • [4] BEST LINEAR UNBIASED ESTIMATION BY RECURSIVE METHODS
    BLUM, M
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (01) : 167 - &
  • [5] LINEAR-SPACES AND THEORY OF BEST LINEAR UNBIASED ESTIMATION
    GNOT, S
    KLONECKI, W
    ZMYSLONY, R
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 26 (01): : 69 - 72
  • [6] SIRE EVALUATION WITH BEST LINEAR UNBIASED PREDICTORS
    BULMER, MG
    [J]. BIOMETRICS, 1982, 38 (04) : 1086 - 1088
  • [7] The best linear unbiased estimation algorithm with Doppler measurements
    Wang, Wei
    Li, Dan
    Jiang, Li-Ping
    Jin, Yu-Hong
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2015, 37 (06): : 1336 - 1342
  • [8] BEST LINEAR UNBIASED ESTIMATION FOR MULTIVARIATE STATIONARY PROCESSES
    SHUMWAY, RH
    DEAN, WC
    [J]. TECHNOMETRICS, 1968, 10 (03) : 523 - &
  • [9] SIRE EVALUATION WITH BEST LINEAR UNBIASED PREDICTORS - RESPONSE
    GIANOLA, D
    GOFFINET, B
    [J]. BIOMETRICS, 1982, 38 (04) : 1085 - 1086
  • [10] Note on the best linear unbiased estimation based on order statistics
    Balakrishnan, N
    Rao, CR
    [J]. AMERICAN STATISTICIAN, 1997, 51 (02): : 181 - 185