A Bayesian approach for neutral particles source estimation

被引:0
|
作者
Pazinatto, C. B. [1 ]
Barichello, L. B. [2 ]
Orlande, H. R. B. [3 ]
机构
[1] Sul Rio Grandense Fed Inst Educ Sci & Technol IFS, Pelotas, RS, Brazil
[2] Univ Fed Rio Grande do Sul UFRGS, Inst Matemat & Estat, Porto Alegre, RS, Brazil
[3] Fed Univ Rio de Janeiro UFRJ, Dept Mech Engn, Politecn COPPE, Rio De Janeiro, Brazil
关键词
Adjoint transport equation; analytical methods; inverse problems; particle source estimation; Bayesian inference; Markov chain Monte Carlo; DISCRETE-ORDINATES SOLUTION; INVERSE-SOURCE PROBLEM; TRANSPORT; MULTIGROUP; EXPLICIT;
D O I
10.1080/17415977.2020.1776273
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the adjoint to the transport operator is used to estimate the spatial distribution of an energy dependent neutral particles source in a homogeneous one-dimensional medium, from measurements of internal detectors. An analytical discrete ordinates formulation, the ADO method, is applied to derive a spatially explicit solution for the adjoint flux. A Bayesian approach is considered to relate the measurements with prior information and then the Metropolis-Hastings algorithm is used do draw samples of the posterior distributions. Explicit expressions for the measurements are derived, allowing relevant reduction in computational time. Simulations are performed for successfully estimating polynomial and piecewise constant localized energy dependent sources. Two and six energy group problems are considered.
引用
收藏
页码:95 / 130
页数:36
相关论文
共 50 条
  • [41] A machine learning approach to Bayesian parameter estimation
    Nolan, Samuel
    Smerzi, Augusto
    Pezze, Luca
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [42] A BAYESIAN APPROACH TO THE GLOBAL ESTIMATION OF MATERNAL MORTALITY
    Alkema, Leontine
    Zhang, Sanqian
    Chou, Doris
    Gemmill, Alison
    Moller, Ann-Beth
    Fat, Doris Ma
    Say, Lale
    Mathers, Colin
    Hogan, Daniel
    ANNALS OF APPLIED STATISTICS, 2017, 11 (03): : 1245 - 1274
  • [43] A Bayesian approach for relaxation times estimation in MRI
    Baselice, Fabio
    Ferraioli, Giampaolo
    Pascazio, Vito
    MAGNETIC RESONANCE IMAGING, 2016, 34 (03) : 312 - 325
  • [44] A semiparametric Bayesian approach to extreme value estimation
    do Nascimento, Fernando Ferraz
    Gamerman, Dani
    Lopes, Hedibert Freitas
    STATISTICS AND COMPUTING, 2012, 22 (02) : 661 - 675
  • [45] A BAYESIAN APPROACH TO PROBLEMS IN STOCHASTIC ESTIMATION AND CONTROL
    HO, YC
    LEE, RCK
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1964, AC 9 (04) : 333 - &
  • [46] A Parametric Bayesian Approach in Density Ratio Estimation
    Sadeghkhani, Abdolnasser
    Peng, Yingwei
    Lin, Chunfang
    STATS, 2019, 2 (02): : 189 - 201
  • [47] Porous Material Parameter Estimation: A Bayesian Approach
    Fackler, Cameron
    Dieckman, Eric
    Xiang, Ning
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2012, 1443 : 314 - 321
  • [48] Motor unit number estimation - A Bayesian approach
    Ridall, P. Gareth
    Pettitt, Anthony N.
    Henderson, Robert D.
    McCombe, Pamela A.
    BIOMETRICS, 2006, 62 (04) : 1235 - 1250
  • [49] A semiparametric Bayesian approach to extreme value estimation
    Fernando Ferraz do Nascimento
    Dani Gamerman
    Hedibert Freitas Lopes
    Statistics and Computing, 2012, 22 : 661 - 675
  • [50] A BAYESIAN APPROACH TO DEMAND ESTIMATION AND INVENTORY PROVISIONING
    BROWN, GF
    ROGERS, WF
    NAVAL RESEARCH LOGISTICS, 1973, 20 (04) : 607 - 624