Cervical ossification of the posterior longitudinal ligament: factors affecting the effect of posterior decompression

被引:11
|
作者
Nishida, Norihiro [1 ]
Kanchiku, Tsukasa [1 ]
Kato, Yoshihiko [1 ]
Imajo, Yasuaki [1 ]
Suzuki, Hidenori [1 ]
Yoshida, Yuichiro [1 ]
Ohgi, Junji [2 ]
Chen, Xian [2 ]
Taguchi, Toshihiko [1 ]
机构
[1] Yamaguchi Univ, Grad Sch Med, Dept Orthopaed Surg, Yamaguchi, Japan
[2] Yamaguchi Univ, Dept Appl Med Engn Sci, Yamaguchi, Japan
来源
JOURNAL OF SPINAL CORD MEDICINE | 2017年 / 40卷 / 01期
基金
日本学术振兴会;
关键词
Finite element method; Cervical ossification of the posterior longitudinal ligament; Posterior decompression; K-line; instrumented fusion; SPINAL-CORD-INJURY; FINITE-ELEMENT MODEL; SPONDYLOTIC MYELOPATHY; ANTERIOR DECOMPRESSION; SURGICAL STRATEGY; GRAY-MATTER; LAMINOPLASTY; FUSION; WHITE; MECHANISMS;
D O I
10.1080/10790268.2016.1140392
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: Decompression procedures for cervical myelopathy of ossification of the posterior longitudinal ligament (OPLL) are anterior decompression with fusion, laminoplasty, and posterior decompression with fusion. Preoperative and postoperative stress analyses were performed for compression from hill-shaped cervical OPLL using 3-dimensional finite element method (FEM) spinal cord models. Methods: Three FEM models of vertebral arch, OPLL, and spinal cord were used to develop preoperative compression models of the spinal cord to which 10%, 20%, and 30% compression was applied; a posterior compression with fusion model of the posteriorly shifted vertebral arch; an advanced kyphosis model following posterior decompression with the spinal cord stretched in the kyphotic direction; and a combined model of advanced kyphosis following posterior decompression and intervertebral mobility. The combined model had discontinuity in the middle of OPLL, assuming the presence of residual intervertebral mobility at the level of maximum cord compression, and the spinal cord was mobile according to flexion of vertebral bodies by 5 degrees, 10 degrees, and 15 degrees. Results: In the preoperative compression model, intraspinal stress increased as compression increased. In the posterior decompression with fusion model, intraspinal stress decreased, but partially persisted under 30% compression. In the advanced kyphosis model, intraspinal stress increased again. As anterior compression was higher, the stress increased more. In the advanced kyphosis + intervertebral mobility model, intraspinal stress increased more than in the only advanced kyphosis model following decompression. Intraspinal stress increased more as intervertebral mobility increased. Conclusion: In high residual compression or instability after posterior decompression, anterior decompression with fusion or posterior decompression with instrumented fusion should be considered.
引用
收藏
页码:93 / 99
页数:7
相关论文
共 50 条
  • [41] Treatment for thoracic ossification of posterior longitudinal ligament with posterior circumferential decompression: complications and managements
    Yang, Baohui
    Wang, Yi
    He, Xijing
    Li, Haopeng
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2016, 11
  • [42] Progression of ossification of the posterior longitudinal ligament of the thoracic spine following posterior decompression and stabilization
    Sugita, Shurei
    Chikuda, Hirotaka
    Takeshita, Katsushi
    Seichi, Atsushi
    Tanaka, Sakae
    JOURNAL OF NEUROSURGERY-SPINE, 2014, 21 (05) : 773 - 777
  • [43] Posterior decompression with instrumented fusion for thoracic myelopathy caused by ossification of the posterior longitudinal ligament
    Yamazaki, Masashi
    Okawa, Akihiko
    Fujiyoshi, Takayuki
    Furuya, Takeo
    Koda, Masao
    EUROPEAN SPINE JOURNAL, 2010, 19 (05) : 691 - 698
  • [44] Posterior decompression and fusion versus laminoplasty for cervical ossification of posterior longitudinal ligament: a systematic review and meta-analysis
    Xu, Ping
    Sun, Guo-Dong
    Xun, Lu
    Huang, Shi-Shu
    Li, Zhi-Zhong
    NEUROSURGICAL REVIEW, 2021, 44 (03) : 1457 - 1469
  • [45] Anterior and Posterior Segmental Decompression and Fusion for Severely Localized Ossification of the Posterior Longitudinal Ligament of the Cervical Spine: Technical Note
    Arima, Hironori
    Naito, Kentaro
    Yamagata, Toru
    Kawahara, Shinichi
    Ohata, Kenji
    Takami, Toshihiro
    NEUROLOGIA MEDICO-CHIRURGICA, 2019, 59 (06) : 238 - 245
  • [46] Morphologic limitations of posterior decompression by midsagittal splitting method for myelopathy caused by ossification of the posterior longitudinal ligament in the cervical spine
    Yamazaki, A
    Homma, T
    Uchiyama, S
    Katsumi, Y
    Okumura, H
    SPINE, 1999, 24 (01) : 32 - 34
  • [47] Addition of instrumented fusion after posterior decompression surgery suppresses thickening of ossification of the posterior longitudinal ligament of the cervical spine
    Ota, Mitsutoshi
    Furuya, Takeo
    Maki, Satoshi
    Inada, Taigo
    Kamiya, Koshiro
    Ijima, Yasushi
    Saito, Junya
    Takahashi, Kazuhisa
    Yamazaki, Masashi
    Aramomi, Masaaki
    Mannoji, Chikato
    Koda, Masao
    JOURNAL OF CLINICAL NEUROSCIENCE, 2016, 34 : 162 - 165
  • [48] Surgical outcomes of cervical myelopathy due to ossification of posterior longitudinal ligament: Anterior decompression and fusion versus posterior laminoplasty
    Xu, Ping
    Zhuang, Jing-Shen
    Huang, Yu-Sheng
    Tu, Chen
    Chen, Jian-Ting
    Zhong, Zhao-Ming
    JOURNAL OF ORTHOPAEDIC SURGERY, 2019, 27 (02)
  • [49] Posterior decompression and fusion versus laminoplasty for cervical ossification of posterior longitudinal ligament: a systematic review and meta-analysis
    Ping Xu
    Guo-Dong Sun
    Lu Xun
    Shi-Shu Huang
    Zhi-Zhong Li
    Neurosurgical Review, 2021, 44 : 1457 - 1469
  • [50] Comparison of laminoplasty and posterior fusion surgery for cervical ossification of posterior longitudinal ligament
    Hiroaki Nakashima
    Shiro Imagama
    Toshitaka Yoshii
    Satoru Egawa
    Kenichiro Sakai
    Kazuo Kusano
    Yukihiro Nakagawa
    Takashi Hirai
    Kanichiro Wada
    Keiichi Katsumi
    Kengo Fujii
    Atsushi Kimura
    Takeo Furuya
    Tsukasa Kanchiku
    Yukitaka Nagamoto
    Yasushi Oshima
    Narihito Nagoshi
    Kei Ando
    Masahiko Takahata
    Kanji Mori
    Hideaki Nakajima
    Kazuma Murata
    Shunji Matsunaga
    Takashi Kaito
    Kei Yamada
    Sho Kobayashi
    Satoshi Kato
    Tetsuro Ohba
    Satoshi Inami
    Shunsuke Fujibayashi
    Hiroyuki Katoh
    Haruo Kanno
    Yuanying Li
    Hiroshi Yatsuya
    Masao Koda
    Yoshiharu Kawaguchi
    Katsushi Takeshita
    Morio Matsumoto
    Masashi Yamazaki
    Atsushi Okawa
    Scientific Reports, 12