PREDICTING LUNG TUMOR EVOLUTION DURING RADIOTHERAPY FROM PET IMAGES USING A PATIENT SPECIFIC MODEL

被引:0
|
作者
Mi, Hongmei [1 ]
Petitjean, Caroline [1 ]
Ruan, Su [1 ]
Vera, Pierre [2 ]
Dubray, Bernard [2 ]
机构
[1] Univ Rouen, LITIS EA4108, Rouen, France
[2] Ctr Henri Becquerel, Rouen, France
关键词
prediction; tumor evolution; PDE; reaction-advection equation; optical flow; PET; BRAIN-TUMORS; GROWTH;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose a patient-specific model based on PDE to predict the evolution of lung tumors during radiotherapy. The evolution of tumor cell densities is formulated by three terms: 1) advection describing the mobility, 2) reaction representing the proliferation modeled as Gompertz differential equation, and 3) treatment quanti tying the radiotherapeutic efficacy modeled as exponential function. As tumor cell density variation can be derived from PET images, the novel idea is to model the advection term by calculating 3D optical flow field from sequential images. To estimate patient-specific parameters, we carry out an optimization between the predicted and observed images, under a volume-dose model constraint. Threshold method is then used to define tumor contours and maximum standardized uptake values, based on the predicted tumor cell densities. We present the results obtained in 8 patients, where the predicted tumor contours are compared to those drawn by an expert.
引用
收藏
页码:1404 / 1407
页数:4
相关论文
共 50 条
  • [41] Predicting Patient-Specific Radiotherapy Protocols Based on Mathematical Model Choice for Proliferation Saturation Index
    Jan Poleszczuk
    Rachel Walker
    Eduardo G. Moros
    Kujtim Latifi
    Jimmy J. Caudell
    Heiko Enderling
    [J]. Bulletin of Mathematical Biology, 2018, 80 : 1195 - 1206
  • [42] Metabolic Tumor Volume of Methionine PET in Early Lung Cancer is Useful for Predicting Prognosis of Patients treated with Carbon Ion Radiotherapy
    Tamura, Kentaro
    Nishii, Ryuichi
    Yamazaki, Kana
    Yamamoto, Naoyoshi
    Higashi, Tatsuya
    Tsuji, Hiroshi
    [J]. JOURNAL OF NUCLEAR MEDICINE, 2021, 62
  • [43] Predicting Prognosis of Lung Cancer Patient Based On Radiomic Features From Slow CT Images
    Sato, S.
    Kadoya, N.
    Takeda, K.
    Kajikawa, T.
    Yamamoto, T.
    Takeda, K.
    Jingu, K.
    [J]. MEDICAL PHYSICS, 2018, 45 (06) : E166 - E166
  • [44] Predicting Esophagitis During Radical Lung Radiation Therapy Using 18-FDG-PET
    Mehmood, Q.
    Sun, A.
    Becker, N.
    Higgins, J.
    Marshall, A.
    Le, L.
    McCloskey, P.
    Ford, V.
    Clarke, K.
    Yap, M.
    Bezjak, A.
    Bissonnette, J.
    [J]. INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2014, 90 : S631 - S632
  • [45] Deep Learning Model for Predicting Lung Adenocarcinoma Recurrence from Whole Slide Images
    Su, Ziyu
    Afzaal, Usman
    Niu, Shuo
    de Toro, Margarita Munoz
    Xing, Fei
    Ruiz, Jimmy
    Gurcan, Metin N.
    Li, Wencheng
    Niazi, M. Khalid Khan
    [J]. CANCERS, 2024, 16 (17)
  • [46] Tumor regression during radiotherapy for non-small cell lung cancer patients using cone-beam computed tomography images
    Van Timmeren, J. E.
    Van Elmpt, W.
    De Ruysscher, D.
    Reymen, B.
    Hansen, O.
    Brink, C.
    [J]. STRAHLENTHERAPIE UND ONKOLOGIE, 2020, 196 (02) : 159 - 171
  • [47] Lung tumor motion prediction during lung brachytherapy using Finite Element Model
    Shirzadi, Zahra
    Naini, Ali Sadeghi
    Samani, Abbas
    [J]. MEDICAL IMAGING 2012: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2012, 8316
  • [48] Automated Lung Nodule Segmentation Using an Active Contour Model Based on PET/CT Images
    Qiang, Yan
    Zhang, Xiaohui
    Ji, Guohua
    Zhao, Juanjuan
    [J]. JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (08) : 1972 - 1976
  • [49] Intra-patient variability of tumor volume and tumor motion during radiotherapy for non-small cell lung cancer
    Dekker, A.
    Bosmans, G.
    van Baardwijk, A.
    Ollers, M.
    Boersma, L.
    Minken, A.
    Lambin, P.
    De Ruysscher, D.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2006, 81 : S224 - S224
  • [50] Predicting lung cancer treatment response from CT images using deep learning
    Tyagi, Shweta
    Talbar, Sanjay N. N.
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (05) : 1577 - 1592