Variational approach to modeling soft and stiff interfaces in the Kirchhoff-Love theory of plates

被引:31
|
作者
Furtsev, Alexey [1 ,3 ]
Rudoy, Evgeny [1 ,2 ,3 ]
机构
[1] Lavrentyev Inst Hydrodynam SB RAS, 15 Ac Lavrentieva Ave, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, 1 Pirogova Str, Novosibirsk 630090, Russia
[3] Sobolev Inst Math, 4 Ac Koptyuga Ave, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
Bonded structure; Kirchhoff-Love plate; Composite material; Interface conditions; Biharmonic equation; Asymptotic analysis; QUASI-STATIC DELAMINATION; NUMERICAL-SIMULATION; IMPERFECT INTERFACE; ASYMPTOTIC ANALYSIS; ELASTIC INCLUSIONS; BOUNDARY; EQUILIBRIUM; DERIVATION;
D O I
10.1016/j.ijsolstr.2020.06.044
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Within the framework of the Kirchhoff-Love theory, a thin homogeneous layer (called adhesive) of small width between two plates (called adherents) is considered. It is assumed that elastic properties of the adhesive layer depend on its width which is a small parameter of the problem. Our goal is to perform an asymptotic analysis as the parameter goes to zero. It is shown that depending on the softness or stiffness of the adhesive, there are seven distinct types of interface conditions. In all cases, we establish weak convergence of the solutions of the initial problem to the solutions of limiting ones in appropriate Sobolev spaces. The asymptotic analysis is based on variational properties of solutions of corresponding equilibrium problems. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:562 / 574
页数:13
相关论文
共 50 条
  • [1] Signorini's problem in the Kirchhoff-Love theory of plates
    Paumier, JC
    COMPTES RENDUS MATHEMATIQUE, 2002, 335 (06) : 567 - 570
  • [2] Intrinsic formulation of the Kirchhoff-Love theory of nonlinearly elastic plates
    Ciarlet, Philippe G.
    Mardare, Cristinel
    MATHEMATICS AND MECHANICS OF SOLIDS, 2023, 28 (06) : 1349 - 1362
  • [3] An intrinsic formulation of the Kirchhoff-Love theory of linearly elastic plates
    Ciarlet, Philippe G.
    Mardare, Cristinel
    ANALYSIS AND APPLICATIONS, 2018, 16 (04) : 565 - 584
  • [4] A hierarchical approach to the a posteriori error estimation of isogeometric Kirchhoff plates and Kirchhoff-Love shells
    Antolin, Pablo
    Buffa, Annalisa
    Coradello, Luca
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 363
  • [5] Quasistatic delamination models for Kirchhoff-Love plates
    Freddi, Lorenzo
    Paroni, Roberto
    Roubicek, Tomas
    Zanini, Chiara
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (11): : 845 - 865
  • [6] Formulation of Problems in the General Kirchhoff-Love Theory of Inhomogeneous Anisotropic Plates
    Gorbachev, V. I.
    Kabanova, L. A.
    MOSCOW UNIVERSITY MECHANICS BULLETIN, 2018, 73 (03) : 60 - 66
  • [7] Isogeometric collocation for Kirchhoff-Love plates and shells
    Maurin, Florian
    Greco, Francesco
    Coox, Laurens
    Vandepitte, Dirk
    Desmet, Wim
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 329 : 396 - 420
  • [8] Large deformation Kirchhoff-Love shell hierarchically enriched with warping: Isogeometric formulation and modeling of alternating stiff/soft layups
    Magisano, Domenico
    Corrado, Antonella
    Leonetti, Leonardo
    Kiendl, Josef
    Garcea, Giovanni
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 418
  • [9] eXtended finite element methods for thin cracked plates with Kirchhoff-Love theory
    Lasry, Jeremie
    Pommier, Julien
    Renard, Yves
    Salauen, Michel
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (09) : 1115 - 1138
  • [10] Virtual element for the buckling problem of Kirchhoff-Love plates
    Mora, David
    Velasquez, Ivan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 360