A Sulfur-Limonene-Based Electrode for Lithium-Sulfur Batteries: High-Performance by Self-Protection

被引:132
|
作者
Wu, Feixiang [1 ]
Chen, Shuangqiang [1 ]
Srot, Vesna [1 ]
Huang, Yuanye [1 ]
Sinha, Shyam Kanta [1 ]
van Aken, Peter A. [1 ]
Maier, Joachim [1 ]
Yu, Yan [1 ,2 ]
机构
[1] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[2] Chinese Acad Sci, Univ Sci & Technol China, Dept Mat Sci & Engn, Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
cathodes; limonene; Li-S batteries; polysulfide; self-protection; sulfur; ELEMENTAL SULFUR; INVERSE VULCANIZATION; CATHODE; POLYSULFIDE; NITROGEN; ADSORPTION; CAPACITY;
D O I
10.1002/adma.201706643
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The lithium-sulfur battery is considered as one of the most promising energy storage systems and has received enormous attentions due to its high energy density and low cost. However, polysulfide dissolution and the resulting shuttle effects hinder its practical application unless very costly solutions are considered. Herein, a sulfur-rich polymer termed sulfur-limonene polysulfide is proposed as powerful electroactive material that uniquely combines decisive advantages and leads out of this dilemma. It is amenable to a large-scale synthesis by the abundant, inexpensive, and environmentally benign raw materials sulfur and limonene (from orange and lemon peels). Moreover, owing to self-protection and confinement of lithium sulfide and sulfur, detrimental dissolution and shuttle effects are successfully avoided. The sulfur-limonene-based electrodes (without elaborate synthesis or surface modification) exhibit excellent electrochemical performances characterized by high discharge capacities (approximate to 1000 mA h g(-1) at C/2) and remarkable cycle stability (average fading rate as low as 0.008% per cycle during 300 cycles).
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A Strategy for Configuration of an Integrated Flexible Sulfur Cathode for High-Performance Lithium-Sulfur Batteries
    Wang, Hongqiang
    Zhang, Wenchao
    Liu, Huakun
    Guo, Zaiping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (12) : 3992 - 3996
  • [32] Metal-Based Electrocatalysts for High-Performance Lithium-Sulfur Batteries: A Review
    Mahankali, Kiran
    Nagarajan, Sudhan
    Thangavel, Naresh Kumar
    Rajendran, Sathish
    Yeddala, Munaiah
    Arava, Leela Mohana Reddy
    CATALYSTS, 2020, 10 (10) : 1 - 28
  • [33] Fibrous organosulfur cathode materials with high bonded sulfur for high-performance lithium-sulfur batteries
    Weret, Misganaw Adigo
    Kuo, Chung-Feng Jeffrey
    Su, Wei-Nien
    Zeleke, Tamene Simachew
    Huang, Chen-Jui
    Sahalie, Niguse Aweke
    Zegeye, Tilahun Awoke
    Wondimkun, Zewdu Tadesse
    Fenta, Fekadu Wubatu
    Jote, Bikila Alemu
    Tsai, Meng-Che
    Hwang, Bing Joe
    JOURNAL OF POWER SOURCES, 2022, 541
  • [34] Thiol-based electrolyte additives for high-performance lithium-sulfur batteries
    Wu, Heng-Liang
    Shin, Minjeong
    Liu, Yao-Min
    See, Kimberly A.
    Gewirth, Andrew A.
    NANO ENERGY, 2017, 32 : 50 - 58
  • [35] Graphene-based interlayer for high-performance lithium-sulfur batteries: A review
    Liu, Yong
    Wei, Huijie
    Zhai, Xiaoliang
    Wang, Fei
    Ren, Xinyuan
    Xiong, Yi
    Akiyoshi, Osaka
    Pan, Kunming
    Ren, Fengzhang
    Wei, Shizhong
    MATERIALS & DESIGN, 2021, 211
  • [36] Sulfur Loaded by Nanometric Tin as a New Electrode for High-Performance Lithium/Sulfur Batteries
    Marangon, Vittorio
    Hassoun, Jusef
    ENERGY TECHNOLOGY, 2019, 7 (12)
  • [37] Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for High-Performance Lithium-Sulfur Batteries
    Zhang, Xuqing
    Xie, Dong
    Zhong, Yu
    Wang, Donghuang
    Wu, Jianbo
    Wang, Xiuli
    Xia, Xinhui
    Gu, Changdong
    Tu, Jiangping
    CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (44) : 10610 - 10615
  • [38] Lithium-Sulfur Batteries: The Effect of High Sulfur Loading on the Electrochemical Performance
    Cha, Eunho
    Patel, Mumukshu D.
    Choi, Tae-Youl
    Choi, Wonbong
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 295 - 302
  • [39] Graphene/Sulfur/Carbon Nanocomposite for High Performance Lithium-Sulfur Batteries
    Jin, Kangke
    Zhou, Xufeng
    Liu, Zhaoping
    NANOMATERIALS, 2015, 5 (03): : 1481 - 1492
  • [40] 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries
    Yu-Hong Liu
    Cao-Yu Wang
    Si-Lin Yang
    Fei-Fei Cao
    Huan Ye
    Journal of Energy Chemistry, 2022, 66 (03) : 429 - 439