A Sulfur-Limonene-Based Electrode for Lithium-Sulfur Batteries: High-Performance by Self-Protection

被引:132
|
作者
Wu, Feixiang [1 ]
Chen, Shuangqiang [1 ]
Srot, Vesna [1 ]
Huang, Yuanye [1 ]
Sinha, Shyam Kanta [1 ]
van Aken, Peter A. [1 ]
Maier, Joachim [1 ]
Yu, Yan [1 ,2 ]
机构
[1] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[2] Chinese Acad Sci, Univ Sci & Technol China, Dept Mat Sci & Engn, Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
cathodes; limonene; Li-S batteries; polysulfide; self-protection; sulfur; ELEMENTAL SULFUR; INVERSE VULCANIZATION; CATHODE; POLYSULFIDE; NITROGEN; ADSORPTION; CAPACITY;
D O I
10.1002/adma.201706643
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The lithium-sulfur battery is considered as one of the most promising energy storage systems and has received enormous attentions due to its high energy density and low cost. However, polysulfide dissolution and the resulting shuttle effects hinder its practical application unless very costly solutions are considered. Herein, a sulfur-rich polymer termed sulfur-limonene polysulfide is proposed as powerful electroactive material that uniquely combines decisive advantages and leads out of this dilemma. It is amenable to a large-scale synthesis by the abundant, inexpensive, and environmentally benign raw materials sulfur and limonene (from orange and lemon peels). Moreover, owing to self-protection and confinement of lithium sulfide and sulfur, detrimental dissolution and shuttle effects are successfully avoided. The sulfur-limonene-based electrodes (without elaborate synthesis or surface modification) exhibit excellent electrochemical performances characterized by high discharge capacities (approximate to 1000 mA h g(-1) at C/2) and remarkable cycle stability (average fading rate as low as 0.008% per cycle during 300 cycles).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A sulfur-limonene based electrode for lithium-sulfur batteries: High-performance by self-protection
    Yu, Yan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [2] A multilayered flexible electrode with high sulfur loading for high-performance lithium-sulfur batteries
    Zeng, Shuaibo
    Li, Xin
    Guo, Fei
    Zhong, Hai
    Mai, Yaohua
    ELECTROCHIMICA ACTA, 2019, 320
  • [3] Fabrication of a sandwich structured electrode for high-performance lithium-sulfur batteries
    Ding, Bing
    Xu, Guiyin
    Shen, Laifa
    Nie, Ping
    Hu, Pengfei
    Dou, Hui
    Zhang, Xiaogang
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (45) : 14280 - 14285
  • [4] Unexpected Effect of Electrode Architecture on High-Performance Lithium-Sulfur Batteries
    Xiao, Peitao
    Sun, Lixia
    Liao, Dankui
    Agboola, Phillips O.
    Shakir, Imran
    Xu, Yuxi
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (39) : 33269 - 33275
  • [5] Advances in High-Performance Lithium-Sulfur Batteries
    Liu Shuai
    Yao Lu
    Zhang Qin
    Li Lu-Lu
    Hu Nan-Tao
    Wei Liang-Ming
    Wei Hao
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (12) : 2339 - 2358
  • [6] A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries
    Li, Zhen
    Guan, Bu Yuan
    Zhang, Jintao
    Lou, Xiong Wen
    JOULE, 2017, 1 (03) : 576 - 587
  • [7] Sulfur Cathodes Based on Conductive MXene Nanosheets for High-Performance Lithium-Sulfur Batteries
    Liang, Xiao
    Garsuch, Arnd
    Nazar, Linda F.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (13) : 3907 - 3911
  • [8] Graphdiyne nanostructure for high-performance lithium-sulfur batteries
    Wang, Fan
    Zuo, Zicheng
    Li, Liang
    He, Feng
    Li, Yuliang
    NANO ENERGY, 2020, 68
  • [9] A multifunctional separator for high-performance lithium-sulfur batteries
    Yang, Dezhi
    Zhi, Ruoyu
    Ruan, Daqian
    Yan, Wenqi
    Zhu, Yusong
    Chen, Yuhui
    Fu, Lijun
    Holze, Rudolf
    Zhang, Yi
    Wu, Yuping
    Wang, Xudong
    ELECTROCHIMICA ACTA, 2020, 334
  • [10] Targeted Electrocatalysis for High-Performance Lithium-Sulfur Batteries
    Nazir, Aqsa
    Pathak, Anil
    Hamal, Dambar
    Awadallah, Osama
    Motevalian, Saeme
    Claus, Ana
    Drozd, Vadym
    El-Zahab, Bilal
    ENERGY & ENVIRONMENTAL MATERIALS, 2025, 8 (02)