Cluster-factorized steady states in finite-range processes

被引:6
|
作者
Chatterjee, Amit [1 ]
Pradhan, Punyabrata [2 ]
Mohanty, P. K. [1 ,3 ]
机构
[1] Saha Inst Nucl Phys, Condensed Matter Phys Div, Kolkata 700064, India
[2] SN Bose Natl Ctr Basic Sci, Dept Theoret Sci, Kolkata 700098, India
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 03期
关键词
D O I
10.1103/PhysRevE.92.032103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a class of nonequilibrium lattice models on a ring where particles hop in a particular direction, from a site to one of its (say, right) nearest neighbors, with a rate that depends on the occupation of all the neighboring sites within a range R. This finite-range process (FRP) for R = 0 reduces to the well-known zero-range process (ZRP), giving rise to a factorized steady state (FSS) for any arbitrary hop rate. We show that, provided the hop rates satisfy a specific condition, the steady state of FRP can be written as a product of a cluster-weight function of (R + 1) occupation variables. We show that, for a large class of cluster-weight functions, the cluster-factorized steady state admits a finite dimensional transfer-matrix formulation, which helps in calculating the spatial correlation functions and subsystem mass distributions exactly. We also discuss a criterion for which the FRP undergoes a condensation transition.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] ON EVOLUTION OF SYSTEMS WITH FINITE-RANGE INTERACTIONS
    BIEL, J
    NUOVO CIMENTO B, 1965, 40 (01): : 213 - &
  • [22] Efimov Physics with a Finite-Range Parameter
    Gattobigio, M.
    Kievsky, A.
    FEW-BODY SYSTEMS, 2015, 56 (11-12) : 881 - 887
  • [23] ON REDUCING THE REFLECTIVITY INTEGRAL TO A FINITE-RANGE
    CHAPMAN, CH
    KENNETT, BLN
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1987, 90 (03): : 741 - 746
  • [24] SEPARABLE REPRESENTATIONS FOR FINITE-RANGE POTENTIALS
    BUND, GW
    TIJERO, MC
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1980, 57 (02): : 234 - 248
  • [25] A FINITE-RANGE DISTRIBUTION OF FAILURE TIMES
    MUKHERJEE, SP
    ISLAM, A
    NAVAL RESEARCH LOGISTICS, 1983, 30 (03) : 487 - 491
  • [26] FINITE-RANGE EFFECTS IN PIONIC ATOMS
    IACHELLO, F
    LANDE, A
    PHYSICS LETTERS B, 1974, B 50 (03) : 313 - 315
  • [27] Finite-size instabilities in finite-range forces
    Gonzalez-Boquera, C.
    Centelles, M.
    Vinas, X.
    Robledo, L. M.
    PHYSICAL REVIEW C, 2021, 103 (06)
  • [28] FINITE-RANGE WBP STRIPPING MODEL
    PEARSON, CA
    GIBSON, FP
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (11): : 1315 - &
  • [29] t1/3 superdiffusivity of finite-range asymmetric exclusion processes on Z
    Quastel, Jeremy
    Valko, Benedek
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 273 (02) : 379 - 394
  • [30] Nonlocal Convection-Diffusion Problems on Bounded Domains and Finite-Range Jump Processes
    D'Elia, Marta
    Du, Qiang
    Gunzburger, Max
    Lehoucq, Richard
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2017, 17 (04) : 707 - 722