Cluster-factorized steady states in finite-range processes

被引:6
|
作者
Chatterjee, Amit [1 ]
Pradhan, Punyabrata [2 ]
Mohanty, P. K. [1 ,3 ]
机构
[1] Saha Inst Nucl Phys, Condensed Matter Phys Div, Kolkata 700064, India
[2] SN Bose Natl Ctr Basic Sci, Dept Theoret Sci, Kolkata 700098, India
[3] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 03期
关键词
D O I
10.1103/PhysRevE.92.032103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study a class of nonequilibrium lattice models on a ring where particles hop in a particular direction, from a site to one of its (say, right) nearest neighbors, with a rate that depends on the occupation of all the neighboring sites within a range R. This finite-range process (FRP) for R = 0 reduces to the well-known zero-range process (ZRP), giving rise to a factorized steady state (FSS) for any arbitrary hop rate. We show that, provided the hop rates satisfy a specific condition, the steady state of FRP can be written as a product of a cluster-weight function of (R + 1) occupation variables. We show that, for a large class of cluster-weight functions, the cluster-factorized steady state admits a finite dimensional transfer-matrix formulation, which helps in calculating the spatial correlation functions and subsystem mass distributions exactly. We also discuss a criterion for which the FRP undergoes a condensation transition.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] MARKOVIAN INTERACTION PROCESSES WITH FINITE-RANGE INTERACTIONS
    HOLLEY, R
    ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (06): : 1961 - 1967
  • [2] On the integrability of zero-range chipping models with factorized steady states
    Povolotsky, A. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (46)
  • [3] STRONG CLUSTER PROPERTIES FOR CLASSICAL SYSTEMS WITH FINITE-RANGE INTERACTION
    DUNEAU, M
    IAGOLNITZER, D
    SOUILLARD, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 35 (04) : 307 - 320
  • [4] FINITE-RANGE GRAVITATION
    FREUND, PGO
    MAHESHWARI, A
    SCHONBERG, E
    ASTROPHYSICAL JOURNAL, 1969, 157 (2P1): : 857 - +
  • [5] Finite-Range Decomposition
    Bauerschmidt, Roland
    Brydges, David C.
    Slade, Gordon
    INTRODUCTION TO A RENORMALISATION GROUP METHOD, 2019, 2242 : 37 - 52
  • [6] FINITE-RANGE GRAVITATION
    DATTA, B
    RANA, NC
    PHYSICS LETTERS B, 1979, 88 (3-4) : 392 - 394
  • [7] Note on the diffusivity of finite-range asymmetric exclusion processes on Z
    Quastel, Jeremy
    Valko, Benedek
    IN AND OUT OF EQUILIBRIUM 2, 2008, 60 : 543 - 549
  • [8] A FINITE-RANGE FAILURE MODEL
    SIDDIQUI, SA
    BALKRISHAN
    GUPTA, S
    SUBHARWAL, M
    MICROELECTRONICS AND RELIABILITY, 1992, 32 (10): : 1453 - 1457
  • [9] FINITE-RANGE SURVIVAL MODEL
    SIDDIQUI, SA
    SUBHARWAL, M
    GUPTA, S
    BALKRISHAN
    MICROELECTRONICS AND RELIABILITY, 1994, 34 (08): : 1377 - 1380
  • [10] Finite-range interactions and phases
    Gril K.
    Periodica Mathematica Hungarica, 2005, 50 (1-2) : 155 - 163