Additive sparse spanners for graphs with bounded length of largest induced cycle

被引:10
|
作者
Chepoi, VD
Dragan, FF [1 ]
Yan, CY
机构
[1] Kent State Univ, Dept Comp Sci, Kent, OH 44242 USA
[2] Univ Aix Marseille 2, Lab Informat Fondamentale, F-13284 Marseille, France
关键词
additive graph spanners; efficient algorithms; k-chordal graphs; distance;
D O I
10.1016/j.tcs.2005.05.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we show that every chordal graph with n vertices and m edges admits an additive 4-spanner with at most 2n - 2 edges and an additive 3-spanner with at most O(n log n) edges. This significantly improves results of Peleg and Schaffer from [Graph Spanners, J Graph Theory 13 (1989) 99-116]. Our spanners are additive and easier to construct. An additive 4-spanner can be constructed in linear time while an additive 3-spanner is constructable in O(m log n) time. Furthermore, our method can be extended to graphs with largest induced cycles of length k. Any such graph admits an additive (k + 1)-spanner with at most 2n - 2 edges which is constructable in O(n k + m) time. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 75
页数:22
相关论文
共 50 条
  • [31] Largest sparse subgraphs of random graphs
    Fountoulakis, Nikolaos
    Kang, Ross J.
    McDiarmid, Colin
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 35 : 232 - 244
  • [32] The largest hole in sparse random graphs
    Draganic, Nemanja
    Glock, Stefan
    Krivelevich, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (04) : 666 - 677
  • [33] Additive Spanners and Distance and Routing Labeling Schemes for Hyperbolic Graphs
    Victor Chepoi
    Feodor F. Dragan
    Bertrand Estellon
    Michel Habib
    Yann Vaxès
    Yang Xiang
    Algorithmica, 2012, 62 : 713 - 732
  • [34] Additive Spanners and Distance and Routing Labeling Schemes for Hyperbolic Graphs
    Chepoi, Victor
    Dragan, Feodor F.
    Estellon, Bertrand
    Habib, Michel
    Vaxes, Yann
    Xiang, Yang
    ALGORITHMICA, 2012, 62 (3-4) : 713 - 732
  • [35] Sparse partition universal graphs for graphs of bounded degree
    Kohayakawa, Yoshiharu
    Roedl, Vojtech
    Schacht, Mathias
    Szemeredi, Endre
    ADVANCES IN MATHEMATICS, 2011, 226 (06) : 5041 - 5065
  • [36] Embedding graphs with bounded degree in sparse pseudorandom graphs
    Y. Kohayakawa
    V. Rödl
    P. Sissokho
    Israel Journal of Mathematics, 2004, 139 : 93 - 137
  • [37] Embedding graphs with bounded degree in sparse pseudorandom graphs
    Kohayakawa, Y
    Rödl, V
    Sissokho, P
    ISRAEL JOURNAL OF MATHEMATICS, 2004, 139 (1) : 93 - 137
  • [38] Sparse universal graphs for bounded-degree graphs
    Alon, Noga
    Capalbo, Michael
    RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (02) : 123 - 133
  • [39] Second largest eigenpair statistics for sparse graphs
    Susca, Vito A. R.
    Vivo, Pierpaolo
    Kuhn, Reimer
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (01)
  • [40] Cycle lengths in sparse graphs
    Sudakov, Benny
    Verstraetet, Jacques
    COMBINATORICA, 2008, 28 (03) : 357 - 372