Sparse Approximate Inference for Spatio-Temporal Point Process Models

被引:6
|
作者
Cseke, Botond [1 ]
Zammit-Mangion, Andrew [2 ]
Heskes, Tom [3 ]
Sanguinetti, Guido [1 ]
机构
[1] Univ Edinburgh, Sch Informat, 10 Crichton St, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Bristol, Sch Geog, Bristol, Avon, England
[3] Radboud Univ Nijmegen, Fac Sci, Nijmegen, Netherlands
基金
英国生物技术与生命科学研究理事会;
关键词
Conflict analysis; Expectation propagation; Latent Gaussian models; Log-Gaussian Cox process; Sparse approximate inference; Structure learning; Variational approximate inference; BAYESIAN-INFERENCE; NESTED-DISSECTION; PATTERNS; DIFFUSION; DISEASE; SYSTEMS; GRAPHS;
D O I
10.1080/01621459.2015.1115357
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal log-Gaussian Cox process models play a central role in the analysis of spatially distributed systems in several disciplines. Yet, scalable inference remains computationally challenging both due to the high-resolution modeling generally required and the analytically intractable likelihood function. Here, we exploit the sparsity structure typical of (spatially) discretized log-Gaussian Cox process models by using approximate message-passing algorithms. The proposed algorithms scale well with the state dimension and the length of the temporal horizon with moderate loss in distributional accuracy. They hence provide a flexible and faster alternative to both nonlinear filtering-smoothing type algorithms and to approaches that implement the Laplace method or expectation propagation on (block) sparse latent Gaussian models. We infer the parameters of the latent Gaussian model using a structured variational Bayes approach. We demonstrate the proposed framework on simulation studies with both Gaussian and point-process observations and use it to reconstruct the conflict intensity and dynamics in Afghanistan from the WikiLeaks Afghan War Diary. Supplementary materials for this article are available online.
引用
收藏
页码:1746 / 1763
页数:18
相关论文
共 50 条
  • [21] Spatio-temporal point process filtering methods with an application
    Frcalova, Blazena
    Benes, Viktor
    Klement, Daniel
    [J]. ENVIRONMETRICS, 2010, 21 (3-4) : 240 - 252
  • [22] Bayesian Path Inference Using Sparse GPS Samples With Spatio-Temporal Constraints
    Kang, Jun
    Yan, Ke
    Li, Yixiu
    Duan, Zongtao
    Duan, Peibo
    Huang, Baoqi
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 12353 - 12365
  • [23] Mechanistic Spatio-Temporal Point Process Models for Marked Point Processes, with a View to Forest Stand Data
    Moller, Jesper
    Ghorbani, Mohammad
    Rubak, Ege
    [J]. BIOMETRICS, 2016, 72 (03) : 687 - 696
  • [24] Novel evaluation metrics for sparse spatio-temporal point process hotspot predictions - a crime case study
    Adepeju, Monsuru
    Rosser, Gabriel
    Cheng, Tao
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2016, 30 (11) : 2133 - 2154
  • [25] Integrated Systems for Inducing Spatio-Temporal Process Models
    Park, Chunki
    Bridewell, Will
    Langley, Pat
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 1555 - 1560
  • [26] An additive approximate Gaussian process model for large spatio-temporal data
    Ma, Pulong
    Konomi, Bledar A.
    Kang, Emily L.
    [J]. ENVIRONMETRICS, 2019, 30 (08)
  • [27] Sequential Bayesian inference for spatio-temporal models of temperature and humidity data
    Lai, Yingying
    Golightly, Andrew
    Boys, Richard J.
    [J]. JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 43
  • [28] Efficient Hierarchical Bayesian Inference for Spatio-temporal Regression Models in Neuroimaging
    Hashemi, Ali
    Gao, Yijing
    Cai, Chang
    Ghosh, Sanjay
    Mueller, Klaus-Robert
    Nagarajan, Srikantan S.
    Haufe, Stefan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [29] Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors
    Kuzin, Danil
    Isupova, Olga
    Mihaylova, Lyudmila
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (17) : 4598 - 4611
  • [30] A spatio-temporal Poisson hurdle point process to model wildfires
    Laura Serra
    Marc Saez
    Pablo Juan
    Diego Varga
    Jorge Mateu
    [J]. Stochastic Environmental Research and Risk Assessment, 2014, 28 : 1671 - 1684