Sparse Approximate Inference for Spatio-Temporal Point Process Models

被引:6
|
作者
Cseke, Botond [1 ]
Zammit-Mangion, Andrew [2 ]
Heskes, Tom [3 ]
Sanguinetti, Guido [1 ]
机构
[1] Univ Edinburgh, Sch Informat, 10 Crichton St, Edinburgh EH8 9AB, Midlothian, Scotland
[2] Univ Bristol, Sch Geog, Bristol, Avon, England
[3] Radboud Univ Nijmegen, Fac Sci, Nijmegen, Netherlands
基金
英国生物技术与生命科学研究理事会;
关键词
Conflict analysis; Expectation propagation; Latent Gaussian models; Log-Gaussian Cox process; Sparse approximate inference; Structure learning; Variational approximate inference; BAYESIAN-INFERENCE; NESTED-DISSECTION; PATTERNS; DIFFUSION; DISEASE; SYSTEMS; GRAPHS;
D O I
10.1080/01621459.2015.1115357
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal log-Gaussian Cox process models play a central role in the analysis of spatially distributed systems in several disciplines. Yet, scalable inference remains computationally challenging both due to the high-resolution modeling generally required and the analytically intractable likelihood function. Here, we exploit the sparsity structure typical of (spatially) discretized log-Gaussian Cox process models by using approximate message-passing algorithms. The proposed algorithms scale well with the state dimension and the length of the temporal horizon with moderate loss in distributional accuracy. They hence provide a flexible and faster alternative to both nonlinear filtering-smoothing type algorithms and to approaches that implement the Laplace method or expectation propagation on (block) sparse latent Gaussian models. We infer the parameters of the latent Gaussian model using a structured variational Bayes approach. We demonstrate the proposed framework on simulation studies with both Gaussian and point-process observations and use it to reconstruct the conflict intensity and dynamics in Afghanistan from the WikiLeaks Afghan War Diary. Supplementary materials for this article are available online.
引用
收藏
页码:1746 / 1763
页数:18
相关论文
共 50 条
  • [1] On fitting spatio-temporal disease mapping models using approximate Bayesian inference
    Dolores Ugarte, Maria
    Adin, Aritz
    Goicoa, Tomas
    Fernandez Militino, Ana
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2014, 23 (06) : 507 - 530
  • [2] Sparse Spatio-temporal Inference of Electromagnetic Brain Sources
    Stahlhut, Carsten
    Attias, Hagai T.
    Wipf, David
    Hansen, Lars K.
    Nagarajan, Srikantan S.
    [J]. MACHINE LEARNING IN MEDICAL IMAGING, 2010, 6357 : 157 - +
  • [3] SPATIO-TEMPORAL MODELLING OF A COX POINT PROCESS SAMPLED BY A CURVE, FILTERING AND INFERENCE
    Frcalova, Blazena
    Benes, Viktor
    [J]. KYBERNETIKA, 2009, 45 (06) : 912 - 930
  • [4] Asymptotic models and inference for extremes of spatio-temporal data
    Turkman, Kamil Feridun
    Turkman, M. A. Amaral
    Pereira, J. M.
    [J]. EXTREMES, 2010, 13 (04) : 375 - 397
  • [5] Inference for the Analysis of Ordinal Data with Spatio-Temporal Models
    Peraza-Garay, F.
    Marquez-Urbina, J. U.
    Gonzalez-Farias, G.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2020, 16 (02): : 192 - 225
  • [6] Asymptotic models and inference for extremes of spatio-temporal data
    Kamil Feridun Turkman
    M. A. Amaral Turkman
    J. M. Pereira
    [J]. Extremes, 2010, 13 : 375 - 397
  • [7] Spatio-temporal point process statistics: A review
    Gonzalez, Jonatan A.
    Rodriguez-Cortes, Francisco J.
    Cronie, Ottmar
    Mateu, Jorge
    [J]. SPATIAL STATISTICS, 2016, 18 : 505 - 544
  • [8] Approximate spatio-temporal retrieval
    Papadias, D
    Mamoulis, N
    Delis, V
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2001, 19 (01) : 53 - 96
  • [9] Spatio-temporal modeling of infectious diseases by integrating compartment and point process models
    Amaral, Andre Victor Ribeiro
    Gonzalez, Jonatan A.
    Moraga, Paula
    [J]. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023, 37 (04) : 1519 - 1533
  • [10] Spatio-temporal modeling of infectious diseases by integrating compartment and point process models
    André Victor Ribeiro Amaral
    Jonatan A. González
    Paula Moraga
    [J]. Stochastic Environmental Research and Risk Assessment, 2023, 37 : 1519 - 1533