共 50 条
p62/Sqstm1 rescue in muscle retards the progression of steatohepatitis in p62/Sqstm1-null mice fed a high-fat diet
被引:1
|作者:
Miura, Ikuru
[1
]
Okada, Kosuke
[2
]
Ishii, Akiko
[3
]
Warabi, Eiji
[4
,5
]
Watahiki, Takahisa
[6
]
To, Keii
[7
]
Shimano, Hitoshi
[8
]
Ariizumi, Shunichi
[9
]
Shoda, Junichi
[2
]
机构:
[1] Univ Tsukuba, Grad Sch Comprehens Human Sci, Doctoral Program Sports Med, Tsukuba, Japan
[2] Univ Tsukuba, Fac Med, Dept Med Sci, Tsukuba, Japan
[3] Univ Tsukuba, Fac Med, Dept Internal Med Neurol, Tsukuba, Japan
[4] Univ Tsukuba, Lab Anim Resource Ctr, Transborder Med Res Ctr, Dept Anat & Embryol, Tsukuba, Japan
[5] Univ Tsukuba, Fac Med, Dept Anat & Embryol, Tsukuba, Japan
[6] Univ Tsukuba, Grad Sch Comprehens Human Sci, Doctoral Program Clin Sci, Tsukuba, Japan
[7] Univ Tsukuba, Grad Sch Comprehens Human Sci, Doctoral Program Med Sci, Tsukuba, Japan
[8] Univ Tsukuba, Fac Med, Dept Internal Med Endocrinol & Metab, Tsukuba, Japan
[9] Univ Tsukuba, Fac Med, Dept Anat & Embryol, Tsukuba, Japan
基金:
日本学术振兴会;
关键词:
p62/SQSTM1;
obesity;
skeletal muscle;
insulin resistance;
non-alcoholic steatohepatitis;
HEPATIC STELLATE CELLS;
INSULIN-RESISTANCE;
P62;
HYPERTROPHY;
DISEASE;
INFLAMMATION;
SENSITIVITY;
MECHANISMS;
SARCOPENIA;
REGULATOR;
D O I:
10.3389/fphys.2022.993995
中图分类号:
Q4 [生理学];
学科分类号:
071003 ;
摘要:
Introduction: Obesity is a risk factor for many diseases because it leads to a reduction in skeletal muscle mass and promotes insulin resistance. p62/Sqstm1-knockout mice are a model of metabolic syndrome; show obesity, insulin resistance, and non-alcoholic fatty liver (NAFL); and develop non-alcoholic steatohepatitis (NASH) in response to the feeding of a high-fat diet (HFD). These phenotypes suggest that muscle p62 may prevent obesity-induced muscle dysfunction. In the present study, we aimed to determine the effects of muscle p62 on skeletal muscle mass, muscle strength, insulin resistance, and NASH pathology. Methods: We generated muscle-specific p62 gene rescue mice (p62-mRes), which express p62 only in muscle and were derived from p62-knock out mice (p62 ( KIKI )) using the cre/loxp system. p62 ( KIKI ) and p62-mRes mice were fed an HFD for 20 weeks and their phenotypes were compared. Results: HFD-feeding caused severe obesity in both p62 ( KIKI ) and p62-mRes mice, but there was no effect of muscle p62 on body mass. Limb skeletal muscle mass, grip strength, and the cross-sectional area of muscle fibers were higher in p62-mRes mice than in p62 ( KIKI ). The glucose tolerance and insulin sensitivity of the p62-mRes mice were also superior. The protein expression of mechanistic target of rapamycin, which promotes muscle protein synthesis, and GLUT4, a glucose transporter in skeletal muscle, were higher in the p62-mRes mice. p62 ( KIKI ) mice developed severe NASH when fed an HFD, but the progression of NASH was retarded by p62 gene rescue in muscle, and the expression of Tgf-beta 1, which encodes a factor that promotes hepatic fibrosis, was reduced. Conclusion: Rescue of muscle-specific p62 in the whole-body p62 knock-out mice ameliorates the insulin resistance and retards the progression of NASH caused by systemic p62 ablation.
引用
收藏
页数:14
相关论文