A new type of plasma wakefield accelerator driven by magnetowaves

被引:15
|
作者
Chen, Pisin [1 ,2 ,3 ,4 ]
Chang, Feng-Yin [4 ,5 ]
Lin, Guey-Lin [4 ,5 ]
Noble, Robert J.
Sydora, Richard [6 ]
机构
[1] Stanford Univ, Stanford Linear Accelerator Ctr, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA
[2] Natl Taiwan Univ, Dept Phys, Taipei 106, Taiwan
[3] Natl Taiwan Univ, Grad Inst Astrophys, Taipei 106, Taiwan
[4] Natl Taiwan Univ, Leung Ctr Cosmol & Particle Astrophys, Taipei 106, Taiwan
[5] Natl Chiao Tung Univ, Inst Phys, Hsinchu 300, Taiwan
[6] Univ Alberta, Dept Phys, Edmonton, AB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
GENERATION; SIMULATION; WAVES;
D O I
10.1088/0741-3335/51/2/024012
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the 'cosmic accelerator' that would accelerate cosmic particles to ultra-high energies in the astrophysical setting. Unlike the more familiar plasma wakefield accelerator (PWFA) and the laser wakefield accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and highspeed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excites the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Optimization of positron trapping and acceleration in an electron-beam-driven plasma wakefield accelerator
    Wang, X.
    Muggli, P.
    Katsouleas, T.
    Joshi, C.
    Mori, W. B.
    Ischebeck, R.
    Hogan, M. J.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2009, 12 (05):
  • [22] Free-electron lasing with compact beam-driven plasma wakefield accelerator
    Pompili, R.
    Alesini, D.
    Anania, M. P.
    Arjmand, S.
    Behtouei, M.
    Bellaveglia, M.
    Biagioni, A.
    Buonomo, B.
    Cardelli, F.
    Carpanese, M.
    Chiadroni, E.
    Cianchi, A.
    Costa, G.
    Del Dotto, A.
    Del Giorno, M.
    Dipace, F.
    Doria, A.
    Filippi, F.
    Galletti, M.
    Giannessi, L.
    Giribono, A.
    Iovine, P.
    Lollo, V
    Mostacci, A.
    Nguyen, F.
    Opromolla, M.
    Di Palma, E.
    Pellegrino, L.
    Petralia, A.
    Petrillo, V
    Piersanti, L.
    Di Pirro, G.
    Romeo, S.
    Rossi, A. R.
    Scifo, J.
    Selce, A.
    Shpakov, V
    Stella, A.
    Vaccarezza, C.
    Villa, F.
    Zigler, A.
    Ferrario, M.
    NATURE, 2022, 605 (7911) : 659 - +
  • [23] Experiments on resonator concept of plasma wakefield accelerator driven by a train of relativistic electron bunches
    Kiselev, V. A.
    Linnik, A. F.
    Mirny, V. L.
    Onishchenko, I. N.
    Uskov, V. V.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2008, (04): : 73 - 76
  • [24] Positron beam extraction from an electron-beam-driven plasma wakefield accelerator
    Fujii, H.
    Marsh, K. A.
    An, W.
    Corde, S.
    Hogan, M. J.
    Yakimenko, V
    Joshi, C.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2019, 22 (09):
  • [25] Field ionization as a plasma source for the plasma wakefield accelerator
    Muggli, P
    Oz, E
    Marsh, KA
    ADVANCED ACCELERATOR CONCEPTS, 2002, 647 : 620 - 627
  • [26] Free-electron lasing with compact beam-driven plasma wakefield accelerator
    R. Pompili
    D. Alesini
    M. P. Anania
    S. Arjmand
    M. Behtouei
    M. Bellaveglia
    A. Biagioni
    B. Buonomo
    F. Cardelli
    M. Carpanese
    E. Chiadroni
    A. Cianchi
    G. Costa
    A. Del Dotto
    M. Del Giorno
    F. Dipace
    A. Doria
    F. Filippi
    M. Galletti
    L. Giannessi
    A. Giribono
    P. Iovine
    V. Lollo
    A. Mostacci
    F. Nguyen
    M. Opromolla
    E. Di Palma
    L. Pellegrino
    A. Petralia
    V. Petrillo
    L. Piersanti
    G. Di Pirro
    S. Romeo
    A. R. Rossi
    J. Scifo
    A. Selce
    V. Shpakov
    A. Stella
    C. Vaccarezza
    F. Villa
    A. Zigler
    M. Ferrario
    Nature, 2022, 605 : 659 - 662
  • [27] Efficient operating mode of the plasma wakefield accelerator
    Lotov, KV
    PHYSICS OF PLASMAS, 2005, 12 (05) : 1 - 4
  • [28] Measurement of the Decelerating Wake in a Plasma Wakefield Accelerator
    Blumenfeld, I.
    Clayton, C. E.
    Decker, F. J.
    Hogan, M. J.
    Huang, C.
    Ischebeck, R.
    Iverson, R. H.
    Joshi, C.
    Katsouleas, T.
    Kirby, N.
    Lu, W.
    Marsh, K. A.
    Mori, W. B.
    Muggli, P.
    Oz, E.
    Siemann, R. H.
    Walz, D. R.
    Zhou, M.
    ADVANCED ACCELERATOR CONCEPTS, 2009, 1086 : 569 - +
  • [29] Colliding ionization injection in a plasma wakefield accelerator
    Wan, Y.
    Zhang, C. J.
    Li, F.
    Wu, Y. P.
    Hua, J. F.
    Pai, C-H
    Lu, W.
    Gu, Y. Q.
    Xu, X. L.
    Joshi, C.
    Mori, W. B.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (03)
  • [30] Emittance preservation in a plasma-wakefield accelerator
    Lindstrom, C. A.
    Beinortaite, J.
    Svensson, J. Bjoerklund
    Boulton, L.
    Chappell, J.
    Diederichs, S.
    Foster, B.
    Garland, J. M.
    Caminal, P. Gonzalez
    Loisch, G.
    Pena, F.
    Schroeder, S.
    Thevenet, M.
    Wesch, S.
    Wing, M.
    Wood, J. C.
    D'Arcy, R.
    Osterhoff, J.
    NATURE COMMUNICATIONS, 2024, 15 (01)