Bio-based poly (lactic acid)/high-density polyethylene blends as shape-stabilized phase change material for thermal energy storage applications

被引:46
|
作者
Lu, Xiang [1 ]
Huang, Jintao [1 ]
Kang, Benhao [1 ]
Yuan, Teng [2 ,3 ]
Qu, Jin-ping [1 ]
机构
[1] South China Univ Technol, Guangdong Prov Key Lab Tech & Equipment Macromol, Natl Engn Res Ctr Novel Equipment Polymer Proc, Key Lab Polymer Proc Engn,Minist Educ, Guangzhou 510641, Guangdong, Peoples R China
[2] South China Agr Univ, Coll Mat & Energy, Guangzhou 510642, Guangdong, Peoples R China
[3] South China Univ Technol, Guangdong Prov Key Lab Green Chem Prod Technol, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
High-density polyethylene; Poly (lactic acid); Melt blending; Co-continuous; Shape-stability; Thermal energy storage; HIGH-DENSITY POLYETHYLENE; COMPOSITE; PARAFFIN; POLYLACTIDE; MORPHOLOGY;
D O I
10.1016/j.solmat.2018.12.036
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, novel shape-stabilized phase change materials (SSPCMs) were first prepared via melt blending by employing bio-based poly (lactic acid) (PLA) as the supporting matrix and high-density polyethylene (HDPE) as the phase change working substance for thermal energy storage (TES) applications. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) results indicated that no chemical reaction occurred between PLA and HDPE during melt processing, but the crystalline regions of HDPE was decreased by the introduction of PLA component. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and shape stability tests showed that the PLA50/50HDPE blend with co-continuous phase morphology had good shape stability and thermal energy storage capacity. The co-continuous structure of un-melted PLA component in the PLA50/50HDPE blend could provide strong support for the HDPE component and maintain its shape during the phase change process. The latent heat for the PLA50/50HDPE blend during melting and freezing process are 100.1 J/g and 97.6 J/g, respectively, and the relative enthalpy efficiency reaches as high as 104.2%. After 10 thermal cycles, the thermal parameters of PLA50/50HDPE blend remain nearly constant. It indicated that the PLA50/50HDPE blend as SSPCM had excellent reusability and thermal reliability. The simple thermal energy storage and conversion experiments showed that the PLA50/50HDPE SSPCM owns great potential in solar energy storage or industrial waste heat recovery field.
引用
收藏
页码:170 / 178
页数:9
相关论文
共 50 条
  • [21] Preparation and Properties of Paraffin/PMMA Shape-stabilized Phase Change Material for Building Thermal Energy Storage
    孟多
    ZHAO Kang
    WANG Anqi
    WANG Baomin
    Journal of Wuhan University of Technology(Materials Science), 2020, 35 (01) : 231 - 239
  • [22] Valorization of coconut peat to develop a novel shape-stabilized phase change material for thermal energy storage
    Ong, Pin Jin
    Goh, Si Hui Angela
    Leow, Yihao
    Wang, Suxi
    Wang, Pei
    Li, Zibiao
    Yin, Xuesong
    Tan, Beng Hoon
    Thitsartarn, Warintorn
    Xu, Jianwei
    Loh, Xian Jun
    Kai, Dan
    Zhu, Qiang
    JOURNAL OF CLEANER PRODUCTION, 2024, 446
  • [23] Preparation and Properties of Paraffin/PMMA Shape-stabilized Phase Change Material for Building Thermal Energy Storage
    Meng Duo
    Zhao Kang
    Wang Anqi
    Wang Baomin
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2020, 35 (01): : 231 - 239
  • [24] Preparation and Properties of Paraffin/PMMA Shape-stabilized Phase Change Material for Building Thermal Energy Storage
    Duo Meng
    Kang Zhao
    Anqi Wang
    Baomin Wang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2020, 35 : 231 - 239
  • [25] Synthesis of shape-stabilized paraffin/silicon dioxide composites as phase change material for thermal energy storage
    Li, Hui
    Fang, Guiyin
    Liu, Xu
    JOURNAL OF MATERIALS SCIENCE, 2010, 45 (06) : 1672 - 1676
  • [26] Shape-stabilized phase change materials for thermal energy storage and heat dissipation
    Jiang, Zhuoni
    Liu, Xu
    He, Fangfang
    Li, Yongsheng
    Chen, Zhengguo
    Li, Xiaoan
    Wang, Peng
    He, Guansong
    Yang, Wenbin
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 688
  • [27] Thermal Properties of Shape-Stabilized Phase Change Materials Based on Porous Supports for Thermal Energy Storage
    Dominici, Franco
    Miliozzi, Adio
    Torre, Luigi
    ENERGIES, 2021, 14 (21)
  • [28] Using mesoporous carbon to pack polyethylene glycol as a shape-stabilized phase change material with excellent energy storage capacity and thermal conductivity
    Feng, Daili
    Li, Pei
    Feng, Yanhui
    Yan, Yuying
    Zhang, Xinxin
    MICROPOROUS AND MESOPOROUS MATERIALS, 2021, 310
  • [29] Shape-Stabilized Phase Change Material for Solar Thermal Energy Storage: CaO Containing MgCO3 Mixed with Polyethylene Glycol
    Zahir, Md Hasan
    Irshad, Kashif
    Aziz, Md Abdul
    Shafiullah, Md
    Rahman, Mohammad Mizanur
    Hossain, Mohammad M.
    ENERGY & FUELS, 2019, 33 (11) : 12041 - 12051
  • [30] Polyethylene glycol/polypyrrole aerogel shape-stabilized phase change material for solar-thermal energy storage and thermoelectric power generation
    Han, Shenghui
    Xiong, Feng
    Qin, Mulin
    Shen, Zhenghui
    Han, Haiwei
    Jin, Yongkang
    Usman, Ali
    Wang, Yonggang
    Zhong, Ruiqin
    Zou, Ruqiang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 268