Detection of topological phases by quasilocal operators

被引:11
|
作者
Yu, Wing Chi [1 ]
Sacramento, P. D. [2 ,3 ]
Li, Yan Chao [3 ,4 ]
Angelakis, Dimitris G. [1 ,5 ]
Lin, Hai-Qing [3 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[2] Univ Lisbon, Inst Super Tecn, CeFEMA, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
[3] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[4] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[5] Tech Univ Crete, Sch Elect & Comp Engn, Iraklion 73100, Greece
基金
新加坡国家研究基金会;
关键词
QUANTUM; FIDELITY; SOLITONS; STATES;
D O I
10.1103/PhysRevB.99.115113
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It was proposed recently by some of the authors that the quantum phase transition of a topological insulator like the Su-Schrieffer-Heeger (SSH) model may be detected by the eigenvalues and eigenvectors of the reduced density matrix. Here we further extend the scheme of identifying the order parameters by considering the SSH model with the addition of triplet superconductivity. This model has a rich phase diagram due to the competition of the SSH "order" and the Kitaev "order," which requires the introduction of four order parameters to describe the various topological phases. We show how these order parameters can be expressed simply as averages of projection operators on the ground state at certain points deep in each phase and how one can simply obtain the phase boundaries. A scaling analysis in the vicinity of the transition lines is consistent with the quantum Ising universality class.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons
    Filippo Cardano
    Alessio D’Errico
    Alexandre Dauphin
    Maria Maffei
    Bruno Piccirillo
    Corrado de Lisio
    Giulio De Filippis
    Vittorio Cataudella
    Enrico Santamato
    Lorenzo Marrucci
    Maciej Lewenstein
    Pietro Massignan
    Nature Communications, 8
  • [32] Dynamical detection of mean-field topological phases in an interacting Chern insulator
    Jia, Wei
    Zhang, Long
    Zhang, Lin
    Liu, Xiong-Jun
    PHYSICAL REVIEW B, 2023, 107 (12)
  • [33] Interferometry with respect to topological phases
    Tavrov, AV
    Andreev, VA
    Ublinsky, DV
    ELECTRO-OPTICAL TECHNOLOGY FOR REMOTE CHEMICAL DETECTION AND IDENTIFICATION, 1996, 2763 : 53 - 61
  • [34] Topological phases of quantized light
    Cai, Han
    Wang, Da-Wei
    NATIONAL SCIENCE REVIEW, 2021, 8 (01)
  • [35] Intrinsically gapless topological phases
    Thorngren, Ryan
    Vishwanath, Ashvin
    Verresen, Ruben
    PHYSICAL REVIEW B, 2021, 104 (07)
  • [36] Topological phases of a Kitaev tie
    Alfonso Maiellaro
    Francesco Romeo
    Roberta Citro
    The European Physical Journal Special Topics, 2020, 229 : 637 - 646
  • [37] Photonic quadrupole topological phases
    Mittal, Sunil
    Orre, Venkata Vikram
    Zhu, Guanyu
    Gorlach, Maxim A.
    Poddubny, Alexander
    Hafezi, Mohammad
    NATURE PHOTONICS, 2019, 13 (10) : 692 - +
  • [38] Topological phases of spin chains
    Duivenvoorden, Kasper
    Quella, Thomas
    PHYSICAL REVIEW B, 2013, 87 (12)
  • [39] Topological phases of metallophthalocyanine complexes
    Elnikova L.V.
    Elnikova, L.V. (elnikova@itep.ru), 2016, Allerton Press Incorporation (80) : 1165 - 1167
  • [40] Coarse Geometry and Topological Phases
    Eske Ellen Ewert
    Ralf Meyer
    Communications in Mathematical Physics, 2019, 366 : 1069 - 1098