Numerical semigroups II: Pseudo-symmetric AA-semigroups

被引:3
|
作者
Garcia-Marco, Ignacio [1 ]
Alfonsin, Jorge L. Ramirez [2 ]
Rodseth, Oystein J. [3 ]
机构
[1] Univ Lyon, LIP, ENS Lyon, CNRS,UCBL,INRIA,UMR 5668, Lyon, France
[2] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, Case Courrier 051,Pl Eugene Bataillon, F-34095 Montpellier 05, France
[3] Univ Bergen, Dept Math, Johs Brunsgt 12, N-5008 Bergen, Norway
关键词
Numerical semigroup; Apery set; Frobenius number; Cohen-Macaulay type; Genus; Pseudo-symmetry; LINEAR DIOPHANTINE PROBLEM; FROBENIUS;
D O I
10.1016/j.jalgebra.2016.09.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we consider the general numerical AA-semigroup, i.e., semigroups consisting of all non-negative integer linear combinations of relatively prime positive integers of the form a, a+d, a+2d,, a+kd, c. We first prove that, in contrast to arbitrary numerical semigroups, there exists an upper bound for the type of AA-semigroups that only depends on the number of generators of the semigroup. We then present two characterizations of pseudo-symmetric AA-semigroups. The first one leads to a polynomial time algorithm to decide whether an AA-semigroup is pseudo-symmetric. The second one gives a method to construct pseudo-symmetric AA-semigroups and provides explicit families of pseudo-symmetric semigroups with arbitrarily large number of generators. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 498
页数:15
相关论文
共 50 条
  • [31] MUTANTS IN SYMMETRIC SEMIGROUPS
    KIM, JB
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1971, 21 (03) : 355 - &
  • [32] Numerical semigroups that differ from a symmetric numerical semigroup in one element
    Rosales, J. C.
    ALGEBRA COLLOQUIUM, 2008, 15 (01) : 23 - 32
  • [33] On numerical semigroups
    Rosales, JC
    SEMIGROUP FORUM, 1996, 52 (03) : 307 - 318
  • [34] ON NUMERICAL SEMIGROUPS
    FROBERG, R
    GOTTLIEB, C
    HAGGKVIST, R
    SEMIGROUP FORUM, 1987, 35 (01) : 63 - 83
  • [35] The EPSILON experimental pseudo-symmetric trap
    Arsenin, VV
    Dlougach, ED
    Kulygin, VM
    Kuyanov, AY
    Skovoroda, AA
    Timofeev, AV
    Zhil'tsov, VA
    Zvonkov, AV
    NUCLEAR FUSION, 2001, 41 (07) : 945 - 952
  • [36] Numerical semigroups with a given set of pseudo-Frobenius numbers
    Delgado, M.
    Garcia-Sanchez, P. A.
    Robles-Perez, A. M.
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2016, 19 (01): : 186 - 205
  • [37] NUMERICAL SEMIGROUPS THAT ARE FRACTIONS OF NUMERICAL SEMIGROUPS OF MAXIMAL EMBEDDING DIMENSION
    Smith, Harold J.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2010, 17 (01): : 69 - 96
  • [38] On weakly and pseudo-symmetric Riemannian spaces
    Özen, F
    Altay, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2002, 33 (10): : 1477 - 1488
  • [39] Asymmetric and pseudo-symmetric hyperelliptic surfaces
    Emilio Bujalance
    Peter Turbek
    manuscripta mathematica, 2002, 108 : 1 - 11
  • [40] Pseudo-symmetric ideals of semigroup and their radicals
    L. Nochefranca
    K. P. Shum
    Czechoslovak Mathematical Journal, 1998, 48 : 727 - 735