Numerical semigroups II: Pseudo-symmetric AA-semigroups

被引:3
|
作者
Garcia-Marco, Ignacio [1 ]
Alfonsin, Jorge L. Ramirez [2 ]
Rodseth, Oystein J. [3 ]
机构
[1] Univ Lyon, LIP, ENS Lyon, CNRS,UCBL,INRIA,UMR 5668, Lyon, France
[2] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, Case Courrier 051,Pl Eugene Bataillon, F-34095 Montpellier 05, France
[3] Univ Bergen, Dept Math, Johs Brunsgt 12, N-5008 Bergen, Norway
关键词
Numerical semigroup; Apery set; Frobenius number; Cohen-Macaulay type; Genus; Pseudo-symmetry; LINEAR DIOPHANTINE PROBLEM; FROBENIUS;
D O I
10.1016/j.jalgebra.2016.09.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we consider the general numerical AA-semigroup, i.e., semigroups consisting of all non-negative integer linear combinations of relatively prime positive integers of the form a, a+d, a+2d,, a+kd, c. We first prove that, in contrast to arbitrary numerical semigroups, there exists an upper bound for the type of AA-semigroups that only depends on the number of generators of the semigroup. We then present two characterizations of pseudo-symmetric AA-semigroups. The first one leads to a polynomial time algorithm to decide whether an AA-semigroup is pseudo-symmetric. The second one gives a method to construct pseudo-symmetric AA-semigroups and provides explicit families of pseudo-symmetric semigroups with arbitrarily large number of generators. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 498
页数:15
相关论文
共 50 条