A non-Abelian analogue of Whitney's 2-isomorphism theorem

被引:0
|
作者
Katz, Eric [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
Graph theory; Fundamental group; Whitney's 2-isomorphism theorem;
D O I
10.1007/s10801-013-0461-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a non-Abelian analogue of Whitney's 2-isomorphism theorem for graphs. Whitney's theorem states that the cycle space determines a graph up to 2-isomorphism. Instead of considering the cycle space of a graph which is an Abelian object, we consider a mildly non-Abelian object, the 2-truncation of the group algebra of the fundamental group of the graph considered as a subalgebra of the 2-truncation of the group algebra of the free group on the edges. The analogue of Whitney's theorem is that this is a complete invariant of 2-edge connected graphs: let G, G' be 2-edge connected finite graphs; if there is a bijective correspondence between the edges of G and G' that induces equality on the 2-truncations of the group algebras of the fundamental groups, then G and G' are isomorphic.
引用
收藏
页码:683 / 690
页数:8
相关论文
共 50 条
  • [21] A QUANTITATIVE VERSION OF THE NON-ABELIAN IDEMPOTENT THEOREM
    Sanders, Tom
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2011, 21 (01) : 141 - 221
  • [22] On the isomorphism of non-abelian extensions of n-Lie algebras
    Afi, Maha
    Basdouri, Okba
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 173
  • [23] Grothendieck's theorem on non-abelian H2 and local-global principles
    Flicker, YZ
    Scheiderer, C
    Sujatha, R
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (03) : 731 - 750
  • [24] Non-Abelian stokes theorem and computation of Wilson loop
    Chen, Y
    He, B
    Wu, JM
    MODERN PHYSICS LETTERS A, 2000, 15 (17) : 1127 - 1135
  • [25] The isomorphism of generalized Cayley graphs on finite non-abelian simple groups
    Zhu, Xiao-Min
    Liu, Weijun
    Yang, Xu
    DISCRETE MATHEMATICS, 2023, 346 (04)
  • [26] Non-abelian generalizations of the Erdos-Kac theorem
    Murty, MR
    Saidak, F
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2004, 56 (02): : 356 - 372
  • [27] The Livsic periodic point theorem for non-abelian cocycles
    Parry, W
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1999, 19 : 687 - 701
  • [28] The non-Abelian exponentiation theorem for multiple Wilson lines
    Gardi, Einan
    Smillie, Jennifer M.
    White, Chris D.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (06):
  • [29] Product integral formalism and non-Abelian Stokes theorem
    Karp, RL
    Mansouri, F
    Rno, JS
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (11) : 6033 - 6043
  • [30] The non-Abelian exponentiation theorem for multiple Wilson lines
    Einan Gardi
    Jennifer M. Smillie
    Chris D. White
    Journal of High Energy Physics, 2013