Towards Efficient Data Free Black-box Adversarial Attack

被引:23
|
作者
Zhang, Jie [1 ,2 ]
Li, Bo [2 ]
Xu, Jianghe [2 ]
Wu, Shuang [2 ]
Ding, Shouhong [2 ]
Zhang, Lei [1 ]
Wu, Chao [1 ]
机构
[1] Zhejiang Univ, Hangzhou, Peoples R China
[2] Tencent, Youtu Lab, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52688.2022.01469
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classic black-box adversarial attacks can take advantage of transferable adversarial examples generated by a similar substitute model to successfully fool the target model. However, these substitute models need to be trained by target models' training data, which is hard to acquire due to privacy or transmission reasons. Recognizing the limited availability of real data for adversarial queries, recent works proposed to train substitute models in a data-free black-box scenario. However, their generative adversarial networks (GANs) based framework suffers from the convergence failure and the model collapse, resulting in low efficiency. In this paper, by rethinking the collaborative relationship between the generator and the substitute model, we design a novel black-box attack framework. The proposed method can efficiently imitate the target model through a small number of queries and achieve high attack success rate. The comprehensive experiments over six datasets demonstrate the effectiveness of our method against the state-of-the-art attacks. Especially, we conduct both label-only and probability-only attacks on the Microsoft Azure online model, and achieve a 100% attack success rate with only 0.46% query budget of the SOTA method [49].
引用
下载
收藏
页码:15094 / 15104
页数:11
相关论文
共 50 条
  • [31] Black-box adversarial attacks on XSS attack detection model
    Wang, Qiuhua
    Yang, Hui
    Wu, Guohua
    Choo, Kim-Kwang Raymond
    Zhang, Zheng
    Miao, Gongxun
    Ren, Yizhi
    COMPUTERS & SECURITY, 2022, 113
  • [32] Optimized Gradient Boosting Black-Box Adversarial Attack Algorithm
    Liu, Mengting
    Ling, Jie
    Computer Engineering and Applications, 2023, 59 (18) : 260 - 267
  • [33] Evolutionary Multilabel Adversarial Examples: An Effective Black-Box Attack
    Kong L.
    Luo W.
    Zhang H.
    Liu Y.
    Shi Y.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (03): : 562 - 572
  • [34] Substitute Meta-Learning for Black-Box Adversarial Attack
    Hu, Cong
    Xu, Hao-Qi
    Wu, Xiao-Jun
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 2472 - 2476
  • [35] Black-box Adversarial Attack and Defense on Graph Neural Networks
    Li, Haoyang
    Di, Shimin
    Li, Zijian
    Chen, Lei
    Cao, Jiannong
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1017 - 1030
  • [36] Black-box Adversarial Attack on License Plate Recognition System
    Chen J.-Y.
    Shen S.-J.
    Su M.-M.
    Zheng H.-B.
    Xiong H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (01): : 121 - 135
  • [37] BFS2Adv: Black-box adversarial attack towards hard-to-attack short texts
    Han, Xu
    Li, Qiang
    Cao, Hongbo
    Han, Lei
    Wang, Bin
    Bao, Xuhua
    Han, Yufei
    Wang, Wei
    COMPUTERS & SECURITY, 2024, 141
  • [38] Imperceptible black-box waveform-level adversarial attack towards automatic speaker recognition
    Xingyu Zhang
    Xiongwei Zhang
    Meng Sun
    Xia Zou
    Kejiang Chen
    Nenghai Yu
    Complex & Intelligent Systems, 2023, 9 : 65 - 79
  • [39] Imperceptible black-box waveform-level adversarial attack towards automatic speaker recognition
    Zhang, Xingyu
    Zhang, Xiongwei
    Sun, Meng
    Zou, Xia
    Chen, Kejiang
    Yu, Nenghai
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (01) : 65 - 79
  • [40] DifAttack: Query-Efficient Black-Box Adversarial Attack via Disentangled Feature Space
    Liu, Jun
    Zhou, Jiantao
    Zeng, Jiandian
    Tian, Jinyu
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4, 2024, : 3666 - 3674