Generalized Grad-Shafranov equation for non-axisymmetric MHD equilibria

被引:6
|
作者
Burby, J. W. [1 ]
Kallinikos, N. [2 ]
MacKay, R. S. [2 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
EXISTENCE;
D O I
10.1063/5.0015420
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The structure of static MHD equilibria that admit continuous families of Euclidean symmetries is well understood. Such field configurations are governed by the classical Grad-Shafranov equation, which is a single elliptic partial differential equation in two space dimensions. By revealing a hidden symmetry, we show that in fact all smooth solutions of the equilibrium equations with non-vanishing pressure gradients away from the magnetic axis satisfy a generalization of the Grad-Shafranov equation. In contrast to solutions of the classical Grad-Shafranov equation, solutions of the generalized equation are not automatically equilibria, but instead only satisfy force balance averaged over the one-parameter hidden symmetry. We then explain how the generalized Grad-Shafranov equation can be used to reformulate the problem of finding exact three-dimensional smooth solutions of the equilibrium equations as finding an optimal volume-preserving symmetry.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Contour dynamics method for solving the Grad-Shafranov equation with applications to high beta equilibria
    Gourdain, PA
    Leboeuf, JN
    PHYSICS OF PLASMAS, 2004, 11 (09) : 4372 - 4381
  • [32] D-shaped equilibrium for the Grad-Shafranov equation
    Hernandes, J. A.
    Nogueira, G. T.
    PHYSICS OF PLASMAS, 2013, 20 (10)
  • [33] Solution of Grad-Shafranov equation by the method of fundamental solutions
    Nath, D.
    Kalra, M. S.
    JOURNAL OF PLASMA PHYSICS, 2014, 80 : 477 - 494
  • [34] Comment on "Solitonlike solutions of the Grad-Shafranov equation" - Reply
    Lapenta, G
    PHYSICAL REVIEW LETTERS, 2004, 92 (24)
  • [35] A generalized Grad-Shafranov equation with plasma flow under a conformal coordinate transformation
    Kuiroukidis, A.
    Kaltsas, D.
    Throumoulopoulos, G. N.
    PHYSICS OF PLASMAS, 2018, 25 (09)
  • [36] A Hybridizable Discontinuous Galerkin solver for the Grad-Shafranov equation
    Sanchez-Vizuet, Tonatiuh
    Solano, Manuel E.
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 235 : 120 - 132
  • [37] A semi-analytical solver for the Grad-Shafranov equation
    Ciro, D.
    Caldas, I. L.
    PHYSICS OF PLASMAS, 2014, 21 (11)
  • [38] A family of analytic equilibrium solutions for the Grad-Shafranov equation
    Guazzotto, L.
    Freidberg, J. P.
    PHYSICS OF PLASMAS, 2007, 14 (11)
  • [39] On soliton-like solutions of the Grad-Shafranov equation
    Shukla, PK
    Stenflo, L
    Pokhotelov, OA
    PHYSICA SCRIPTA, 2005, T116 : 135 - 135
  • [40] A mimetic spectral element solver for the Grad-Shafranov equation
    Palha, A.
    Koren, B.
    Felici, F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 316 : 63 - 93