Ethylene polymerization behavior of tris(pyrazolyl)borate titanium(IV) complexes

被引:120
|
作者
Murtuza, S
Casagrande, OL
Jordan, RF
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Fed Rio Grande do Sul, Inst Quim, Lab Catalise Mol, BR-90501970 Porto Alegre, RS, Brazil
关键词
D O I
10.1021/om010530j
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
A set of Tp'TiCl3 and Tp'TiCl2(OR) complexes containing tris(pyrazolyl)borate ligands with diverse steric properties has been evaluated for ethylene polymerization under MAO activation conditions (Tp' = HB(3-mesitylpyrazolyl)(2)(5-mesitylpyrazolyl) (Tp(Ms-)), HB(3-mesitylpyrazolyl)(3)(-) (Tp(Ms)), HB(3,5-Me-2-Pyrazolyl)(3)(-) (Tp(+)), HB(pyrazolyl)(3)(-) (Tp), BuB(pyrazoly)(3)(-) ((Bu)Tp)). The activity of Tp'TiX3/MAO varies in the order Tp(Ms*)TiCl(3) (10c) > Tp(Ms)TiCl(3) much greater than Tp*TiCl3, TpTiCl(3), (Bu)TpTiCl(3), Tp*TiCl2((OBu)-Bu-t), Tp*TiCl2(O-2-Bu-t-C6H4). The activity of 10c/MAO is similar to that of Cp2ZrCl2/MAO. High MAO levels or addition of AlMe3 decrease the activity of 10c/MAO, probably due to coordination of AlMe3 to the active Ti species. The predominant chain transfer mechanism for 10c/MAO is chain transfer to AlMe3, which results in broad molecular weight distributions at low Al/Ti ratios (Al/Ti = 200-1000). At very high Al levels (10c/5000 MAO or 10c/1000 MAO/4000 AlMe3) bimodal molecular weight distributions comprising a major low molecular weight fraction (M-w/N-n ca. 3) and a minor high molecular weight fraction are observed, which suggests that several active species are present, only one of which undergoes efficient chain transfer to Al.
引用
收藏
页码:1882 / 1890
页数:9
相关论文
共 50 条
  • [31] BIS-(PYRAZOLYL)BORATE AND TRIS-(PYRAZOLYL)BORATE COMPLEXES OF METHYLTIN CHLORIDES AND THE X-RAY STRUCTURE OF 5-COORDINATE [BIS(PYRAZOLYL)BORATE]CHLORODIMETHYLTIN(IV)
    LEE, SK
    NICHOLSON, BK
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1986, 309 (03) : 257 - 265
  • [32] Spectroscopic and voltametric studies in titanium tris(pyrazolyl)borate catalysts
    Gil, MP
    dos Santos, JHZ
    Casagrande, OL
    Simplício, LMT
    da Rocha, ZN
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2005, 238 (1-2) : 96 - 101
  • [33] Titanium and zirconium complexes containing sterically hindered hydrotris(pyrazolyl)borate ligands: synthesis, structural characterization, and ethylene polymerization studies
    Gil, MP
    Casagrande, OL
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2004, 689 (02) : 286 - 292
  • [34] Diazoalkane complexes of ruthenium with tris(pyrazolyl)borate and bis(pyrazolyl)acetate ligands
    Albertin, Gabriele
    Antoniutti, Stefano
    Bortoluzzi, Marco
    Castro, Jesus
    Marzaro, Lidia
    DALTON TRANSACTIONS, 2015, 44 (35) : 15470 - 15480
  • [35] UHMWPE-Layered Silicate Nanocomposites by in situ Polymerization with Tris(pyrazolyl)borate Titanium/Clay Catalyst
    Junges, Fernando
    Beauvalet, Mariana S.
    Leal, Barbara C.
    Casagrande, Adriana C. A.
    Mota, Fabio F.
    Mauler, Raquel S.
    Casagrande, Osvaldo L., Jr.
    JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, 2009, 20 (03) : 472 - 477
  • [36] Tris(pyrazolyl)borate amidoborane complexes of the group 4 metals
    Fuller, Anna-Marie
    Hughes, David L.
    Lancaster, Simon J.
    DALTON TRANSACTIONS, 2011, 40 (28) : 7434 - 7441
  • [37] Coinage metal complexes of polyfluorinated tris(pyrazolyl)borate ligands
    Dias, HVR
    Jin, W
    Lu, HL
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 560 - INOR
  • [38] Synthesis and reactivity of tris(pyrazolyl)borate cobalt complexes.
    Radzewich, CE
    Jordan, RF
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U37 - U37
  • [39] Determination of coordination hapticity of tris(pyrazolyl)borate complexes.
    Jones, WD
    Northcutt, TO
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U30 - U30
  • [40] Rhenium Tris(pyrazolyl)Borate Oxothiolate Complexes: Syntheses and Structures
    I. V. Skabitskii
    S. G. Sakharov
    A. A. Pasynskii
    R. S. Eshmakov
    Russian Journal of Coordination Chemistry, 2019, 45 : 539 - 547