Multidegrees of tame automorphisms with one prime number

被引:3
|
作者
Li, Jiantao [1 ]
Du, Xiankun [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2013年 / 83卷 / 04期
关键词
multidegree; tame automorphism; elementary reduction; Poisson bracket; WILD AUTOMORPHISMS; REDUCTIONS; RINGS;
D O I
10.5486/PMD.2013.5703
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 3 <= d(1) <= d(2) <= d(3) be integers. We show the following results: (1) If d(2) is a prime number and d(1)/gcd(d(1), d(3)) not equal 2, then (d(1), d(2), d(3)) is a multidegree of a tame automorphism if and only if d(1) = d(2) or d(3) is an element of d(1)N + d(2)N; (2) If d(3) is a prime number and gcd(d(1), d(2)) = 1, then (d(1), d(2), d(3)) is a multidegree of a tame automorphism if and only if d(3) is an element of d(1)N + d(2)N. We also show that the condition d(1)/gcd(d(1), d(3)) not equal 2 in (1) cannot be removed.
引用
收藏
页码:697 / 705
页数:9
相关论文
共 50 条