Local Degradation at Membrane Defects in Polymer Electrolyte Fuel Cells

被引:44
|
作者
Kreitmeier, Stefan [1 ]
Lerch, Philippe [2 ]
Wokaun, Alexander [1 ]
Buechi, Felix N. [1 ]
机构
[1] Paul Scherrer Inst, Electrochem Lab, CH-5232 Villigen, Switzerland
[2] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
关键词
GAS-CROSSOVER; THERMAL-STABILITY; NAFION MEMBRANES; ION;
D O I
10.1149/1.023306jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Membrane defects, such as pinholes and cracks, are common failure modes in polymer electrolyte membranes. The elevated gas crossover at these defect sites is expected to accelerate membrane degradation locally. The defect site will expand, leading to premature cell failures. In order to understand the degradation pathway, degradation processes were analyzed at-membrane defects using mass spectrometry, synchrotron assisted X-ray tomographic microscopy and FM. spectro-microscopy, and thermochromic pigments. MEAs with artificially implemented membrane defects, 10 mu m in diameter, were operated in fuel cells under accelerated stress test conditions. The gas crossover was analyzed online using a tracer gas concept that allows for monitoring the evolution of the defect size. Chemical, mechanical and thermal degradation processes have been identified and investigated. A synergetic effect that results from the combination of the processes accelerates degradation, leading to an exponential increase of the gas crossover. Polymer fracturing, polymer melting, the formation of COOH groups, catalyst sintering, carbon corrosion and local temperatures of up to 140 degrees C were observed at membrane defects. Degradation processes are affected by the degradation side, gas crossover, gas composition, mechanical stress and the local inhomogeneities of the gas diffusion electrode. From the results, an overall degradation mechanism at membrane defects is formulated. (C) 2013 The Electrochemical Society. [DOI: 10.1149/1.023306jes] All rights reserved.
引用
收藏
页码:F456 / F463
页数:8
相关论文
共 50 条
  • [21] Minichannels in polymer electrolyte membrane fuel cells
    Trabold, TA
    [J]. HEAT TRANSFER ENGINEERING, 2005, 26 (03) : 3 - 12
  • [22] Polymer electrolyte membrane technology for fuel cells
    Rajendran, RG
    [J]. MRS BULLETIN, 2005, 30 (08) : 587 - 590
  • [23] Electrocatalysts for polymer electrolyte membrane fuel cells
    Song, Yujiang
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [24] Polymer Electrolyte Membrane Technology for Fuel Cells
    Raj G. Rajendran
    [J]. MRS Bulletin, 2005, 30 : 587 - 590
  • [25] Dynamic modeling of Pt degradation and mitigation strategies in polymer electrolyte membrane fuel cells
    Zheng, Weibo
    Xu, Liangfei
    Hu, Zunyan
    Zhao, Yang
    Li, Jianqiu
    Ouyang, Minggao
    [J]. ETRANSPORTATION, 2022, 12
  • [26] DFT investigation of the polymer electrolyte membrane degradation caused by OH radicals in fuel cells
    Panchenko, Alexander
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2006, 278 (1-2) : 269 - 278
  • [27] The challenges in reliable determination of degradation rates and lifetime in polymer electrolyte membrane fuel cells
    Zhang, Qian
    Harms, Corinna
    Mitzel, Jens
    Gazdzicki, Pawel
    Friedrich, K. Andreas
    [J]. CURRENT OPINION IN ELECTROCHEMISTRY, 2022, 31
  • [28] Degradation of polymer electrolyte membrane fuel cell by siloxane in biogas
    Seo, Ji-Sung
    Kim, Da-Yeong
    Hwang, Sun-Mi
    Seo, Min Ho
    Seo, Dong-Jun
    Yang, Seung Yong
    Han, Chan Hui
    Jung, Yong-Min
    Guim, Hwanuk
    Nahm, Kee Suk
    Yoon, Young-Gi
    Kim, Tae Young
    [J]. JOURNAL OF POWER SOURCES, 2016, 316 : 44 - 52
  • [29] Characteristics of membrane humidifiers for polymer electrolyte membrane fuel cells
    Se-Kyu Park
    Eun Ae Cho
    In-Hwan Oh
    [J]. Korean Journal of Chemical Engineering, 2005, 22 : 877 - 881
  • [30] Characteristics of membrane humidifiers for polymer electrolyte membrane fuel cells
    Park, SK
    Cho, EA
    Oh, IH
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2005, 22 (06) : 877 - 881