Local and global well-posedness for a quadratic Schrodinger system on Zoll manifolds

被引:2
|
作者
Nogueira, Marcelo [1 ]
Panthee, Mahendra [1 ]
机构
[1] Univ Estadual Campinas, Dept Math, BR-13083859 Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Quadratic Schrodinger system; Initial value problem; Compact manifolds; Strichartz estimate; Local and global well-posedness; COMPACT MANIFOLDS; EQUATION; POINTS; INEQUALITIES; BOUNDS;
D O I
10.1016/j.jmaa.2020.124574
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the initial value problem (IVP) associated to a quadratic Schriidinger system {i partial derivative(t)upsilon +/- Delta(g)upsilon - upsilon = epsilon(1)u (upsilon) over bar, t is an element of R, x is an element of M, i sigma partial derivative(t)u +/- Delta(g)u - alpha u - epsilon(2)/2 upsilon(2), sigma < 0, alpha is an element of R, epsilon(i) is an element of C (i = 1, 2), (upsilon(0), u(0)) = (upsilon(0), u(0)), posed on a d-dimensional compact Zoll manifold M. Considering sigma = theta/beta with theta, beta is an element of {n(2) : n is an element of Z} we derive a bilinear Strichartz type estimate and use it to prove the local well-posedness results for given data (upsilon(0), u(0)) is an element of H-s (M) x H-s (M) whenever s > 1/4 when d = 2 and s > d-2/2 when d >= 3. Moreover, in dimensions 2 and 3, we use a Gagliardo-Nirenberg type inequality and conservation laws to prove that the local solution can be extended globally in time whenever s >= 1. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:36
相关论文
共 50 条
  • [21] Well-posedness and local smoothing of solutions of Schrodinger, equations
    Ionescu, AD
    Kenig, CE
    MATHEMATICAL RESEARCH LETTERS, 2005, 12 (2-3) : 193 - 205
  • [22] Local well-posedness of a critical inhomogeneous Schrodinger equation
    Saanouni, Tarek
    Peng, Congming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 10256 - 10273
  • [23] Global Well-Posedness and Scattering for Derivative Schrodinger Equation
    Wang, Yuzhao
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (10) : 1694 - 1722
  • [24] Global well-posedness for the derivative nonlinear Schrodinger equation
    Bahouri, Hajer
    Perelman, Galina
    INVENTIONES MATHEMATICAE, 2022, 229 (02) : 639 - 688
  • [25] Local well-posedness for the Maxwell-Schrodinger equation
    Nakamura, M
    Wada, T
    MATHEMATISCHE ANNALEN, 2005, 332 (03) : 565 - 604
  • [26] Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces
    Hirayama, Hiroyuki
    Kinoshita, Shinya
    Okamoto, Mamoru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 499 (02)
  • [27] Well-Posedness for a System of Quadratic Derivative Nonlinear Schrodinger Equations with Radial Initial Data
    Hirayama, Hiroyuki
    Kinoshita, Shinya
    Okamoto, Mamoru
    ANNALES HENRI POINCARE, 2020, 21 (08): : 2611 - 2636
  • [28] Local well-posedness for the cauchy problem of the quadratic Schrodinger equation with nonlinearity u2
    Kishimoto, Nobu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (05) : 1123 - 1143
  • [29] Normal form approach to global well-posedness of the quadratic derivative nonlinear Schrodinger equation on the circle
    Chung, Jaywan
    Guo, Zihua
    Kwon, Soonsik
    Oh, Tadahiro
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (05): : 1273 - 1297
  • [30] On the global well-posedness for Boussinesq system
    Abidi, H.
    Hmidi, T.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) : 199 - 220