Spatio-temporal autocorrelation of road network data

被引:119
|
作者
Cheng, Tao [1 ]
Haworth, James [1 ]
Wang, Jiaqiu [1 ]
机构
[1] UCL, Dept Civil Environm & Geomat Engn, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Spatial autocorrelation; Network structure; Space-time autocorrelation; Space-time modelling; Travel time prediction; Network complexity; TRAVEL-TIME PREDICTION; SPACE NEURAL-NETWORKS; TRAFFIC-FLOW; MODELS; DEPENDENCY; DYNAMICS; WEIGHTS; BIAS;
D O I
10.1007/s10109-011-0149-5
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Modelling autocorrelation structure among space-time observations is crucial in space-time modelling and forecasting. The aim of this research is to examine the spatio-temporal autocorrelation structure of road networks in order to determine likely requirements for building a suitable space-time forecasting model. Exploratory space-time autocorrelation analysis is carried out using journey time data collected on London's road network. Through the use of both global and local autocorrelation measures, the autocorrelation structure of the road network is found to be dynamic and heterogeneous in both space and time. It reveals that a global measure of autocorrelation is not sufficient to explain the network structure. Dynamic and local structures must be accounted for space-time modelling and forecasting. This has broad implications for space-time modelling and network complexity.
引用
收藏
页码:389 / 413
页数:25
相关论文
共 50 条
  • [31] Spatio-temporal Evolution of Groundwater Vulnerability Based on Spatial Autocorrelation
    Liu, Yu
    Lan, Shuang-Shuang
    Zhang, Yong-Xiang
    Li, Fang-Chun
    Hou, Shu-Kai
    [J]. Huanjing Kexue/Environmental Science, 2017, 38 (10): : 4236 - 4244
  • [32] Spatio-temporal compression of trajectories in road networks
    Iulian Sandu Popa
    Karine Zeitouni
    Vincent Oria
    Ahmed Kharrat
    [J]. GeoInformatica, 2015, 19 : 117 - 145
  • [33] Spatio-temporal compression of trajectories in road networks
    Popa, Iulian Sandu
    Zeitouni, Karine
    Oria, Vincent
    Kharrat, Ahmed
    [J]. GEOINFORMATICA, 2015, 19 (01) : 117 - 145
  • [34] STORM: Spatio-Temporal Online Reasoning and Management of Large Spatio-Temporal Data
    Christensen, Robert
    Wang, Lu
    Li, Feifei
    Yi, Ke
    Tang, Jun
    Villa, Natalee
    [J]. SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1111 - 1116
  • [35] Road Network Traffic Accident Risk Prediction Based on Spatio-Temporal Graph Convolution Network
    Wang, Qingrong
    Zhou, Yutong
    Zhu, Changfeng
    Wu, Yuyu
    [J]. Computer Engineering and Applications, 2023, 59 (13) : 266 - 272
  • [36] A model for spatio-temporal network planning
    Nash, E
    James, P
    Parker, D
    [J]. COMPUTERS & GEOSCIENCES, 2005, 31 (02) : 135 - 143
  • [37] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    [J]. INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [38] Research of Spatio-temporal Similarity Measure on Network Constrained Trajectory Data
    Xia, Ying
    Wang, Guo-Yin
    Zhang, Xu
    Kim, Gyoung-Bae
    Bae, Hae-Young
    [J]. ROUGH SET AND KNOWLEDGE TECHNOLOGY (RSKT), 2010, 6401 : 491 - 498
  • [39] STGAN: Spatio-Temporal Generative Adversarial Network for Traffic Data Imputation
    Yuan, Ye
    Zhang, Yong
    Wang, Boyue
    Peng, Yuan
    Hu, Yongli
    Yin, Baocai
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 200 - 211
  • [40] Unsupervised Anomaly Detection in Spatio-Temporal Stream Network Sensor Data
    Santos-Fernandez, Edgar
    Ver Hoef, Jay M.
    Peterson, Erin E.
    McGree, James
    Villa, Cesar A.
    Leigh, Catherine
    Turner, Ryan
    Roberts, Cameron
    Mengersen, Kerrie
    [J]. Water Resources Research, 2024, 60 (11)