Spatio-temporal autocorrelation of road network data

被引:118
|
作者
Cheng, Tao [1 ]
Haworth, James [1 ]
Wang, Jiaqiu [1 ]
机构
[1] UCL, Dept Civil Environm & Geomat Engn, London WC1E 6BT, England
基金
英国工程与自然科学研究理事会;
关键词
Spatial autocorrelation; Network structure; Space-time autocorrelation; Space-time modelling; Travel time prediction; Network complexity; TRAVEL-TIME PREDICTION; SPACE NEURAL-NETWORKS; TRAFFIC-FLOW; MODELS; DEPENDENCY; DYNAMICS; WEIGHTS; BIAS;
D O I
10.1007/s10109-011-0149-5
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Modelling autocorrelation structure among space-time observations is crucial in space-time modelling and forecasting. The aim of this research is to examine the spatio-temporal autocorrelation structure of road networks in order to determine likely requirements for building a suitable space-time forecasting model. Exploratory space-time autocorrelation analysis is carried out using journey time data collected on London's road network. Through the use of both global and local autocorrelation measures, the autocorrelation structure of the road network is found to be dynamic and heterogeneous in both space and time. It reveals that a global measure of autocorrelation is not sufficient to explain the network structure. Dynamic and local structures must be accounted for space-time modelling and forecasting. This has broad implications for space-time modelling and network complexity.
引用
收藏
页码:389 / 413
页数:25
相关论文
共 50 条
  • [1] Spatio-temporal autocorrelation of road network data
    Tao Cheng
    James Haworth
    Jiaqiu Wang
    [J]. Journal of Geographical Systems, 2012, 14 : 389 - 413
  • [2] Spatio-Temporal Clustering of Road Network Data
    Cheng, Tao
    Anbaroglu, Berk
    [J]. ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2010, 6319 : 116 - 123
  • [3] A UML-based Representation of Spatio-Temporal Evolution in Road Network Data
    Lohfink, Alex
    McPhee, Duncan
    Ware, Mark
    [J]. TRANSACTIONS IN GIS, 2010, 14 (06) : 853 - 872
  • [4] Spatio-temporal methods to reduce data uncertainty in restricted movement on a road network
    Meratnia, N
    Kainz, W
    de By, R
    [J]. ADVANCES IN SPATIAL DATA HANDLING, 2002, : 391 - 402
  • [5] Spatio-Temporal Analyses for Dynamic Urban Road Network Management
    Demirel, Hande
    Shoman, Wasim
    [J]. 19TH EURO WORKING GROUP ON TRANSPORTATION MEETING (EWGT2016), 2017, 22 : 519 - 528
  • [6] Measuring spatio-temporal autocorrelation in time series data of collective human mobility
    Gao, Yong
    Cheng, Jing
    Meng, Haohan
    Liu, Yu
    [J]. GEO-SPATIAL INFORMATION SCIENCE, 2019, 22 (03) : 166 - 173
  • [7] A SPATIO-TEMPORAL AUTOCORRELATION CHANGE DETECTION APPROACH USING HYPER-TEMPORAL SATELLITE DATA
    Kleynhans, W.
    Salmon, B. P.
    Wessels, K. J.
    Olivier, J. C.
    [J]. 2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3459 - 3462
  • [8] Deep spatio-temporal residual neural networks for road-network-based data modeling
    Ren, Yibin
    Cheng, Tao
    Zhang, Yang
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2019, 33 (09) : 1894 - 1912
  • [9] Spatio-Temporal Vehicle Trajectory Recovery on Road Network Based on Traffic Camera Video Data
    Yu, Fudan
    Ao, Wenxuan
    Yan, Huan
    Zhang, Guozhen
    Wu, Wei
    Li, Yong
    [J]. PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4413 - 4421
  • [10] DEFINING DYNAMIC SPATIO-TEMPORAL NEIGHBOURHOOD OF NETWORK DATA
    Cheng, Tao
    Anbaroglu, Berk
    [J]. JOINT INTERNATIONAL CONFERENCE ON THEORY, DATA HANDLING AND MODELLING IN GEOSPATIAL INFORMATION SCIENCE, 2010, 38 : 75 - 79