Study on retrieve specified objects in massive remote sensing data

被引:0
|
作者
Wang, RJ [1 ]
Chen, P [1 ]
Zhang, W [1 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
关键词
content-based image retrieval (CBIR); remote sensing; support vector machine;
D O I
10.1360/05yd0011
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we show that to retrieve specified objects in massive remote sensing data set is very important in both practice and theory. An algorithm-based content retrieval in the massive data set is studied. To avoid the loss of information, the algorithm based on the Support Vector Machine classification is proposed. Also, the experiment on the real data set is made.
引用
收藏
页码:317 / 321
页数:5
相关论文
共 50 条
  • [31] Synergistic use of multi- and hyperspectral remote sensing data and airborne LiDAR to retrieve forest floor reflectance
    Hovi, Aarne
    Schraik, Daniel
    Kuusinen, Nea
    Fabianek, Tomas
    Hanus, Jan
    Homolova, Lucie
    Juola, Jussi
    Lukes, Petr
    Rautiainen, Miina
    REMOTE SENSING OF ENVIRONMENT, 2023, 293
  • [32] Comparison of satellite remote sensing data in the retrieve of PM10 air pollutant over Quito, Ecuador
    Alvarez-Mendoza, Cesar I.
    Teodoro, Ana
    Torres, Nelly
    Vivanco, Valeria
    Ramirez-Cando, Lenin
    REMOTE SENSING TECHNOLOGIES AND APPLICATIONS IN URBAN ENVIRONMENTS III, 2018, 10793
  • [33] Cost-efficient information extraction from massive remote sensing data: When weakly supervised deep learning meets remote sensing big data
    Li, Yansheng
    Li, Xinwei
    Zhang, Yongjun
    Peng, Daifeng
    Bruzzone, Lorenzo
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 120
  • [34] Onboard high rate data transmission of massive remote sensing data using small size buffer
    National Key Laboratory of Space Microwave Technology, Xi'an Institute of Space Radio Technology, Xi'an 710100, China
    Zhu, H. (zhuehong@163.com), 2016, Chinese Institute of Electronics (41):
  • [35] Performance investigation of selected NoSQL databases for massive remote sensing image data storage
    Hajjaji, Yosra
    Farah, Imed Riadh
    2018 4TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP), 2018,
  • [36] MANAGING MASSIVE REMOTE SENSING DATA IN A DATABASE: USING A PURE OBJECT DATABASE AS A SOLUTION
    Gallaher, D.
    Grant, G.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 590 - 592
  • [38] Integration and management of massive remote-sensing data based on GeoSOT subdivision model
    Li, Shuang
    Cheng, Chengqi
    Chen, Bo
    Meng, Li
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [39] Search for Man-Made Objects on the Basis of Multispectral Processing of Remote Sensing Data
    Borzov, S. M.
    Kozik, V. I.
    Potaturkin, O. I.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2010, 46 (06) : 516 - 520
  • [40] The Technology to Identify Firebreak Plowing Objects Based on the Satellite Data of the Earth Remote Sensing
    Maltsev, Evgenii A.
    Maglinets, Yuri A.
    Tsibulskii, Gennady M.
    REGIONAL PROBLEMS OF EARTH REMOTE SENSING (RPERS 2018), 2019, 75