Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets

被引:67
|
作者
Hsieh, Chien-Te [1 ]
Lee, Cheng-En [1 ]
Chen, Yu-Fu [1 ]
Chang, Jeng-Kuei [2 ]
Teng, Hsi-Sheng [3 ,4 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Taoyuan 32003, Taiwan
[2] Natl Cent Univ, Inst Mat Sci & Engn, Taoyuan 32001, Taiwan
[3] Natl Cheng Kung Univ, Res Ctr Energy Technol & Strategy, Dept Chem Engn, Tainan 70101, Taiwan
[4] Natl Cheng Kung Univ, Ctr Micro Nano Sci & Technol, Tainan 70101, Taiwan
关键词
TEMPERATURE-DEPENDENT GROWTH; GRAPHITE BLOCKS; COMPOSITES; ENERGY; NANOCOMPOSITES; CAPACITORS; FERROCENE; ACETYLENE; TRANSPORT; FLAKE;
D O I
10.1039/c5nr04993h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The in-plane (k(ip)) and through-plane (k(tp)) thermal conductivities of heat sinks using carbon nanotubes (CNTs), graphene nanosheets (GNs), and CNT/GN composites are extracted from two experimental setups within the 323-373 K temperature range. Hierarchical three-dimensional CNT/GN frameworks display higher k(ip) and k(tp) values, as compared to the CNT- and GN-based heat sinks. The k(ip) and k(tp) values of the CNT/GN-based heat sink reach as high as 1991 and 76 W m(-1) K-1 at 323 K, respectively. This improved thermal conductivity is attributed to the fact that the hierarchical heat sink offers a stereo thermal conductive network that combines point, line, and plane contact, leading to better heat transport. Furthermore, the compression treatment provided an efficient route to increase both k(ip) and k(tp) values. This result reveals that the hierarchical carbon structures become denser, inducing more thermal conductive area and less thermal resistivity, i.e., a reduced possibility of phonon-boundary scattering. The correlation between thermal and electrical conductivity (e) can be well described by two empirical equations: k(ip) = 567 ln(epsilon) + 1120 and k(tp) = 20.6 ln(epsilon) + 36.1. The experimental results are obtained within the temperature range of 323-373 K, suitably complementing the thermal management of chips for consumer electronics.
引用
收藏
页码:18663 / 18670
页数:8
相关论文
共 50 条
  • [41] Measurements of thermal conductivity of individual carbon nanotubes
    Fujii, Motoo
    Zhang, Xing
    Takahashi, Koji
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (13): : 3385 - 3389
  • [42] Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite
    Neelgund, Gururaj M.
    Oki, Aderemi R.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2016, 484 : 135 - 145
  • [43] Thermal conductivity of suspensions of carbon nanotubes in water
    Assael, MJ
    Chen, CF
    Metaxa, I
    Wakeham, WA
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2004, 25 (04) : 971 - 985
  • [44] Model for thermal conductivity of composites with carbon nanotubes
    A. Andreescu
    Adriana Savin
    Rozina Steigmann
    Nicoleta Iftimie
    E. Mamut
    R. Grimberg
    Journal of Thermal Analysis and Calorimetry, 2008, 94 : 349 - 353
  • [45] Model for thermal conductivity of composites with carbon nanotubes
    Andreescu, A.
    Savin, Adriana
    Steigmann, Rozina
    Iftimie, Nicoleta
    Mamut, E.
    Grimberg, R.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2008, 94 (02) : 349 - 353
  • [46] Thermal Conductivity of Suspensions of Carbon Nanotubes in Water
    M. J. Assael
    C.-F. Chen
    I. Metaxa
    W. A. Wakeham
    International Journal of Thermophysics, 2004, 25 : 971 - 985
  • [47] Unusually high thermal conductivity of carbon nanotubes
    Berber, S
    Kwon, YK
    Tománek, D
    PHYSICAL REVIEW LETTERS, 2000, 84 (20) : 4613 - 4616
  • [48] Thermal conductivity of carbon nanotubes embedded in solids
    Cao, Bing-Yang
    Hou, Quan-Wen
    CHINESE PHYSICS LETTERS, 2008, 25 (04) : 1392 - 1395
  • [49] Thermal conductivity of individual multiwalled carbon nanotubes
    Samani, M. K.
    Khosravian, N.
    Chen, G. C. K.
    Tay, B. K.
    TMNN-2010 - PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON THERMAL AND MATERIALS NANOSCIENCE AND NANOTECHNOLOGY, 2011,
  • [50] Processing and properties of polyethylene reinforced by graphene nanosheets and carbon nanotubes
    El Achaby, M.
    Qaiss, A.
    MATERIALS & DESIGN, 2013, 44 : 81 - 89