Thermal conductivity from hierarchical heat sinks using carbon nanotubes and graphene nanosheets

被引:67
|
作者
Hsieh, Chien-Te [1 ]
Lee, Cheng-En [1 ]
Chen, Yu-Fu [1 ]
Chang, Jeng-Kuei [2 ]
Teng, Hsi-Sheng [3 ,4 ]
机构
[1] Yuan Ze Univ, Dept Chem Engn & Mat Sci, Taoyuan 32003, Taiwan
[2] Natl Cent Univ, Inst Mat Sci & Engn, Taoyuan 32001, Taiwan
[3] Natl Cheng Kung Univ, Res Ctr Energy Technol & Strategy, Dept Chem Engn, Tainan 70101, Taiwan
[4] Natl Cheng Kung Univ, Ctr Micro Nano Sci & Technol, Tainan 70101, Taiwan
关键词
TEMPERATURE-DEPENDENT GROWTH; GRAPHITE BLOCKS; COMPOSITES; ENERGY; NANOCOMPOSITES; CAPACITORS; FERROCENE; ACETYLENE; TRANSPORT; FLAKE;
D O I
10.1039/c5nr04993h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The in-plane (k(ip)) and through-plane (k(tp)) thermal conductivities of heat sinks using carbon nanotubes (CNTs), graphene nanosheets (GNs), and CNT/GN composites are extracted from two experimental setups within the 323-373 K temperature range. Hierarchical three-dimensional CNT/GN frameworks display higher k(ip) and k(tp) values, as compared to the CNT- and GN-based heat sinks. The k(ip) and k(tp) values of the CNT/GN-based heat sink reach as high as 1991 and 76 W m(-1) K-1 at 323 K, respectively. This improved thermal conductivity is attributed to the fact that the hierarchical heat sink offers a stereo thermal conductive network that combines point, line, and plane contact, leading to better heat transport. Furthermore, the compression treatment provided an efficient route to increase both k(ip) and k(tp) values. This result reveals that the hierarchical carbon structures become denser, inducing more thermal conductive area and less thermal resistivity, i.e., a reduced possibility of phonon-boundary scattering. The correlation between thermal and electrical conductivity (e) can be well described by two empirical equations: k(ip) = 567 ln(epsilon) + 1120 and k(tp) = 20.6 ln(epsilon) + 36.1. The experimental results are obtained within the temperature range of 323-373 K, suitably complementing the thermal management of chips for consumer electronics.
引用
收藏
页码:18663 / 18670
页数:8
相关论文
共 50 条
  • [1] Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes
    Xie, S. H.
    Liu, Y. Y.
    Li, J. Y.
    APPLIED PHYSICS LETTERS, 2008, 92 (24)
  • [2] Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets
    Chu, Ke
    Li, Wen-sheng
    Jia, Cheng-chang
    Tang, Fu-ling
    APPLIED PHYSICS LETTERS, 2012, 101 (21)
  • [3] Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites
    Mario Martin-Gallego
    Raquel Verdejo
    Mohamed Khayet
    Jose Maria Ortiz de Zarate
    Mohamed Essalhi
    Miguel Angel Lopez-Manchado
    Nanoscale Research Letters, 6
  • [4] Thermal conductivity of carbon nanotubes and graphene in epoxy nanofluids and nanocomposites
    Martin-Gallego, Mario
    Verdejo, Raquel
    Khayet, Mohamed
    Maria Ortiz de Zarate, Jose
    Essalhi, Mohamed
    Angel Lopez-Manchado, Miguel
    NANOSCALE RESEARCH LETTERS, 2011, 6
  • [5] THERMAL-CONDUCTIVITY OF DIAMOND HEAT SINKS
    BURGEMEISTER, EA
    INDUSTRIAL DIAMOND REVIEW, 1975, (JUL): : 242 - 244
  • [6] Thermal conductivity enhancement of compact heat sinks using cellular metals
    Fiedler, T.
    Oechsner, A.
    Belova, I. V.
    Murch, G. E.
    DIFFUSION IN SOLIDS AND LIQUIDS III, 2008, 273-276 : 222 - +
  • [7] Electronic thermal conductivity of armchair graphene nanoribbons and zigzag carbon nanotubes
    Mousavi, Hamze
    Khodadadi, Jabbar
    Kurdestany, Jamshid Moradi
    Grabowski, Marek
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2017, 85 : 248 - 252
  • [8] Comparison of isotope effects on thermal conductivity of graphene nanoribbons and carbon nanotubes
    Li, Xiuqiang
    Chen, Jie
    Yu, Chenxi
    Zhang, Gang
    APPLIED PHYSICS LETTERS, 2013, 103 (01)
  • [9] Thermal conductivity of carbon nanotubes
    Che, JW
    Çagin, T
    Goddard, WA
    NANOTECHNOLOGY, 2000, 11 (02) : 65 - 69
  • [10] Thermal conductivity of carbon nanotubes
    Sun, Ke
    Stroscio, Michael A.
    Dutta, Mitra
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)