An interval-parameter fuzzy-stochastic programming approach for municipal solid waste management and planning

被引:179
|
作者
Huang, GH [1 ]
Sae-Lim, N [1 ]
Liu, L [1 ]
Chen, Z [1 ]
机构
[1] Univ Regina, Fac Engn, Environm Syst Engn Program, Regina, SK S4S 0A2, Canada
关键词
chance constraint; decision-making; environment; fuzzy; interval; optimization; planning; solid waste; stochastic;
D O I
10.1023/A:1013394118863
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, an integrated fuzzy-stochastic linear programming model is developed and applied to municipal solid waste management. Methods of chance-constrained programming and fuzzy Linear programming are incorporated within a general interval-parameter mixed-integer linear programming framework. It improves upon the existing optimization methods with advantages in uncertainty reflection, data availability, and computational requirement. The model can be used for answering questions related to types, times and sites of solid waste management practices, with the objective of minimizing system costs over the planning horizon. The model can effectively reflect dynamic, interactive, and uncertain characteristics of municipal waste management systems. In its solution process, the model is transformed into two deterministic submodels, corresponding to upper and lower bounds of the desired objective function values under a given significance level, based on an interactive algorithm. Results of the method's application to a hypothetical case indicate that reasonable outputs have been obtained. It demonstrates the practical applicability of the proposed methodology.
引用
收藏
页码:271 / 283
页数:13
相关论文
共 50 条
  • [1] An Interval-Parameter Fuzzy-Stochastic Programming Approach for Municipal Solid Waste Management and Planning
    G.H. Huang
    N. Sae-Lim
    L. Liu
    Z. Chen
    [J]. Environmental Modeling & Assessment, 2001, 6 : 271 - 283
  • [2] Municipal solid waste management under uncertainty: A mixed interval parameter fuzzy-stochastic robust programming approach
    Cai, Yanpeng
    Huang, G. H.
    Nie, X. H.
    Li, Y. P.
    Tan, Q.
    [J]. ENVIRONMENTAL ENGINEERING SCIENCE, 2007, 24 (03) : 338 - 352
  • [3] An interval-parameter fuzzy-stochastic programming approach for air quality management under uncertainty
    Lu, Hong-wei
    Huang, Guohe H.
    Liu, Lei
    He, Li
    [J]. ENVIRONMENTAL ENGINEERING SCIENCE, 2008, 25 (06) : 895 - 909
  • [4] An interval-valued fuzzy-stochastic programming approach and its application to municipal solid waste management
    Wang, S.
    Huang, G. H.
    Yang, B. T.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2012, 29 (01) : 24 - 36
  • [5] Interval-parameter Fuzzy-stochastic Semi-infinite Mixed-integer Linear Programming for Waste Management under Uncertainty
    P. Guo
    G. H. Huang
    L. He
    H. L. Li
    [J]. Environmental Modeling & Assessment, 2009, 14
  • [6] Interval-parameter Fuzzy-stochastic Semi-infinite Mixed-integer Linear Programming for Waste Management under Uncertainty
    Guo, P.
    Huang, G. H.
    He, L.
    Li, H. L.
    [J]. ENVIRONMENTAL MODELING & ASSESSMENT, 2009, 14 (04) : 521 - 537
  • [7] IFRP: A hybrid interval-parameter fuzzy robust programming approach for waste management planning under uncertainty
    Nie, X. H.
    Huang, G. H.
    Li, Y. P.
    Liu, L.
    [J]. JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2007, 84 (01) : 1 - 11
  • [8] Interval stochastic quadratic programming approach for municipal solid waste management
    Guo, P.
    Huang, G. H.
    Li, Y. P.
    [J]. JOURNAL OF ENVIRONMENTAL ENGINEERING AND SCIENCE, 2008, 7 (06) : 569 - 579
  • [9] Interval-parameter semi-infinite fuzzy-stochastic mixed-integer programming approach for environmental management under multiple uncertainties
    Guo, P.
    Huang, G. H.
    [J]. WASTE MANAGEMENT, 2010, 30 (03) : 521 - 531
  • [10] An interval-parameter stochastic robust optimization model for supporting municipal solid waste management under uncertainty
    Xu, Y.
    Huang, G. H.
    Qin, X. S.
    Cao, M. F.
    Sun, Y.
    [J]. WASTE MANAGEMENT, 2010, 30 (02) : 316 - 327