REDUCTION OF GRADIENT RICCI SOLITON EQUATION

被引:4
|
作者
Leandro, Benedito [1 ]
dos Santos, Joao Paulo [2 ]
机构
[1] Univ Fed Goias, Inst Matemat & Estat, BR-74001970 Goiania, Go, Brazil
[2] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Gradient Ricci solitons; exact solutions; reduction; conformal metrics;
D O I
10.5186/aasfm.2020.4554
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider gradient Ricci solitons conformal to an n-dimensional pseudo-Euclidean space and we describe entirely the most general substitution that reduces the resulting system of partial differential equations, originated from the gradient Ricci soliton equations, to a system of ordinary differential equations. As a consequence, the gradient Ricci solitons that arise from the reduced system are invariant under the action of either an (n - 1)-dimensional translation group or the pseudo-orthogonal group acting on the corresponding n-dimensional pseudo-Euclidean space. The reduced system of ordinary differential equations is given. From such a system, particular solutions are obtained.
引用
收藏
页码:1003 / 1011
页数:9
相关论文
共 50 条
  • [21] Existence of gradient Kahler-Ricci expanding soliton
    Guan, Y.
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2001, 40 (06): : 3 - 6
  • [22] Geometry of *-k-Ricci-Yamabe soliton and gradient * -k-Ricci-Yamabe soliton on Kenmotsu manifolds
    Dey, Santu
    Piscoran, Laurian-Ioan
    Roy, Soumendu
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (04): : 907 - 922
  • [23] On almost generalized gradient Ricci-Yamabe soliton
    Kim, Byung Hak
    Choi, Jin Hyuk
    Lee, Sang Deok
    FILOMAT, 2024, 38 (11) : 3825 - 3837
  • [24] SOME RESULTS IN η-RICCI SOLITON AND GRADIENT ρ-EINSTEIN SOLITON IN A COMPLETE RIEMANNIAN MANIFOLD
    Mondal, Chandan Kumar
    Shaikh, Absos Ali
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (04): : 1279 - 1287
  • [25] Characterization of Almost η-Ricci-Yamabe Soliton and Gradient Almost η-Ricci-Yamabe Soliton on Almost Kenmotsu Manifolds
    Mondal, Somnath
    Dey, Santu
    Bhattacharyya, Arindam
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (04) : 728 - 748
  • [26] Volume Growth of Shrinking Gradient Ricci-Harmonic Soliton
    Guoqiang Wu
    Shijin Zhang
    Results in Mathematics, 2017, 72 : 205 - 223
  • [27] CERTAIN RESULTS ON GRADIENT ALMOST η-RICCI-BOURGUIGNON SOLITON
    Dey, Santu
    QUAESTIONES MATHEMATICAE, 2024, 47 (02) : 263 - 284
  • [28] Gradient Ricci-Yamabe Soliton on Twisted Product Manifolds
    Kim, Byung Hak
    Choi, Jin Hyuk
    Lee, Sang Deok
    Han, Chang Yong
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [29] RICCI ρ-SOLITON IN A PERFECT FLUID SPACETIME WITH A GRADIENT VECTOR FIELD
    Dey, Dibakar
    Majhi, Pradip
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (01): : 235 - 242
  • [30] On gradient Ricci soliton space-time warped product
    Chaudhary, Ram Shankar
    Pal, Buddhadev
    AFRIKA MATEMATIKA, 2023, 34 (03)