The Morse-Bott inequalities, orientations, and the Thom isomorphism in Morse homology

被引:1
|
作者
Rot, Thomas O. [1 ]
机构
[1] Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
关键词
D O I
10.1016/j.crma.2016.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Morse-Bott inequalities relate the topology of a closed manifold to the topology of the critical point set of a Morse-Bott function defined on it. The Morse-Bott inequalities are sometimes stated under incorrect orientation assumptions. We show that these assumptions are insufficient with an explicit counterexample and clarify the origin of the mistake. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1026 / 1028
页数:3
相关论文
共 50 条
  • [41] Homotopy types of diffeomorphism groups of polar Morse-Bott foliations on lens spaces, 1
    Khokhliuk, Oleksandra
    Maksymenko, Sergiy
    [J]. JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2023, 18 (2-3) : 313 - 356
  • [42] SINGULAR LEVELS AND TOPOLOGICAL INVARIANTS OF MORSE-BOTT FOLIATIONS ON NON-ORIENTABLE SURFACES
    Martinez-Alfaro, Jose
    Meza-Sarmiento, Ingrid S.
    Oliveira, Regilene D. S.
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2018, 51 (01) : 183 - 213
  • [43] On the Morse-Bott property of analytic functions on Banach spaces with Lojasiewicz exponent one half
    Feehan, Paul M. N.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (02)
  • [44] TOPOLOGICAL CLASSIFICATION OF CIRCLE-VALUED SIMPLE MORSE-BOTT FUNCTIONS ON CLOSED ORIENTABLE SURFACES
    Batista, E. B.
    Costa, J. C. F.
    Meza-Sarmiento, I. S.
    [J]. JOURNAL OF SINGULARITIES, 2022, 25 : 78 - 89
  • [45] MORSE INEQUALITIES
    HENNIART, G
    [J]. ASTERISQUE, 1985, (121-) : 43 - 61
  • [46] The Morse–Bott–Kirwan condition is local
    Tara Holm
    Yael Karshon
    [J]. Research in the Mathematical Sciences, 3
  • [47] ANALYSIS OF CONTACT CAUCHY-RIEMANN MAPS II: CANONICAL NEIGHBORHOODS AND EXPONENTIAL CONVERGENCE FOR THE MORSE-BOTT CASE
    Oh, Yong-Geun
    Wang, Rui
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2018, 231 : 128 - 223
  • [48] Morse inequalities for arrangements
    Cohen, DC
    [J]. ADVANCES IN MATHEMATICS, 1998, 134 (01) : 43 - 45
  • [49] Morse inequalities for foliations
    Connes, Alain
    Fack, Thierry
    [J]. C(STAR)-ALGEBRAS AND ELLIPTIC THEORY, 2006, : 61 - +
  • [50] A generalisation of the Morse inequalities
    Bhupal, M
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2001, 70 : 351 - 385