Geometric transitions, flops and non-Kahler manifolds: II

被引:35
|
作者
Becker, M
Dasgupta, K
Katz, S
Knauf, A
Tatar, R
机构
[1] McGill Univ, Montreal, PQ H3A 2T8, Canada
[2] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
[3] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[4] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[6] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[7] Univ Hamburg, Inst Theoret Phys 2, D-22761 Hamburg, Germany
[8] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/j.nuclphysb.2005.12.023
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We continue our study of geometric transitions in type II and heterotic theories. In type IIB theory we discuss an F-theory setup which clarifies many of our earlier assumptions and allows us to study gravity duals of N = 1 gauge theories with arbitrary global symmetry group G. We also point out the subtle differences between global and local metrics, and show that in many cases the global descriptions are far more complicated than discussed earlier. We determine the full global description in type I/heterotic theory. In type IIA, our analysis gives rise to a local non-Kahler metric whose global description involves a particular orientifold action with gauge fluxes localised on branes. We are also able to identify the three form fields that allow for a smooth flop in the M-theory lift. We briefly discuss the issues of generalized complex structures in type IIB theory and possible half-twisted models in the heterotic duals of our type 11 models. In a companion paper we will present details on the topological aspects of these models. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:124 / 183
页数:60
相关论文
共 50 条
  • [31] QUANTITATIVE AND QUALITATIVE COHOMOLOGICAL PROPERTIES FOR NON-KAHLER MANIFOLDS
    Angella, Daniele
    Tardini, Nicoletta
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 273 - 285
  • [32] The non-abelian Hodge correspondence on some non-Kahler manifolds
    Pan, Changpeng
    Zhang, Chuanjing
    Zhang, Xi
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (11) : 2545 - 2588
  • [33] On non-Kahler compact complex manifolds with balanced and astheno-Kahler metrics
    Latorre, Adela
    Ugarte, Luis
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (01) : 90 - 93
  • [34] Compactifications of heterotic theory on non-Kahler complex manifolds, I
    Becker, K
    Becker, M
    Dasgupta, K
    Green, PS
    JOURNAL OF HIGH ENERGY PHYSICS, 2003, (04):
  • [35] COMPATIBILITY BETWEEN NON-KaHLER STRUCTURES ON COMPLEX (NIL)MANIFOLDS
    Ornea, L.
    Otiman, A-, I
    Stanciu, M.
    TRANSFORMATION GROUPS, 2023, 28 (04) : 1669 - 1686
  • [36] Group actions, non-Kahler complex manifolds and SKT structures
    Poddar, Mainak
    Thakur, Ajay Singh
    COMPLEX MANIFOLDS, 2018, 5 (01): : 9 - 25
  • [37] Analytically stable Higgs bundles on some non-Kahler manifolds
    Zhang, Chuanjing
    Zhang, Xi
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2021, 200 (04) : 1683 - 1707
  • [38] Hyperbolic geometry and non-Kahler manifolds with trivial canonical bundle
    Fine, Joel
    Panov, Dmitri
    GEOMETRY & TOPOLOGY, 2010, 14 (03) : 1723 - 1763
  • [39] On manifolds with trivial logarithmic tangent bundle: The non-kahler case
    Winkelmann, Joerg
    TRANSFORMATION GROUPS, 2008, 13 (01) : 195 - 209
  • [40] Locally Conformal Hermitian Metrics on Complex Non-Kahler Manifolds
    Angella, Daniele
    Ugarte, Luis
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2105 - 2145