Estimation and Partition of Heritability in Human Populations Using Whole-Genome Analysis Methods

被引:129
|
作者
Vinkhuyzen, Anna A. E. [1 ]
Wray, Naomi R. [1 ]
Yang, Jian [1 ,2 ]
Goddard, Michael E. [3 ,4 ]
Visscher, Peter M. [1 ,2 ]
机构
[1] Univ Queensland, Queensland Brain Inst, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Diamantina Inst, Translat Res Inst, Brisbane, Qld 4072, Australia
[3] Univ Melbourne, Dept Food & Agr Syst, Parkville, Vic 3053, Australia
[4] Dept Primary Ind, Biosci Res Div, Bundoora, Vic 3001, Australia
来源
基金
澳大利亚研究理事会; 美国国家卫生研究院;
关键词
quantitative traits; whole-genome methods; additive genetic variance; genomic relationship; mixed linear model; genetic architecture; COMMON SNPS EXPLAIN; BONE-MINERAL DENSITY; WIDE ASSOCIATION; LINKAGE DISEQUILIBRIUM; MISSING HERITABILITY; GENETIC-VARIATION; LARGE PROPORTION; COMPLEX TRAITS; SIB-PAIR; TWIN;
D O I
10.1146/annurev-genet-111212-133258
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Understanding genetic variation of complex traits in human populations has moved from the quantification of the resemblance between close relatives to the dissection of genetic variation into the contributions of individual genomic loci. However, major questions remain unanswered: How much phenotypic variation is genetic; how much of the genetic variation is additive and can be explained by fitting all genetic variants simultaneously in one model, and what is the joint distribution of effect size and allele frequency at causal variants? We review and compare three whole-genome analysis methods that use mixed linear models (MLMs) to estimate genetic variation. In all methods, genetic variation is estimated from the relationship between close or distant relatives on the basis of pedigree information and/or single nucleotide polymorphisms (SNPs). We discuss theory, estimation procedures, bias, and precision of each method and review recent advances in the dissection of genetic variation of complex traits in human populations. By using genome-wide data, it is now established that SNPs in total account for far more of the genetic variation than the statistically highly significant SNPs that have been detected in genome-wide association studies. All SNPs together, however, do not account for all of the genetic variance estimated by pedigree-based methods. We explain possible reasons for this remaining "missing heritability."
引用
收藏
页码:75 / +
页数:26
相关论文
共 50 条
  • [21] Analysis of the bread wheat genome using whole-genome shotgun sequencing
    Rachel Brenchley
    Manuel Spannagl
    Matthias Pfeifer
    Gary L. A. Barker
    Rosalinda D’Amore
    Alexandra M. Allen
    Neil McKenzie
    Melissa Kramer
    Arnaud Kerhornou
    Dan Bolser
    Suzanne Kay
    Darren Waite
    Martin Trick
    Ian Bancroft
    Yong Gu
    Naxin Huo
    Ming-Cheng Luo
    Sunish Sehgal
    Bikram Gill
    Sharyar Kianian
    Olin Anderson
    Paul Kersey
    Jan Dvorak
    W. Richard McCombie
    Anthony Hall
    Klaus F. X. Mayer
    Keith J. Edwards
    Michael W. Bevan
    Neil Hall
    Nature, 2012, 491 : 705 - 710
  • [22] Statistical power and heritability in whole-genome association studies for quantitative traits
    Khanzadeh, Hassan
    Hossein-Zadeh, Navid Ghavi
    Ghovvati, Shahrokh
    META GENE, 2021, 28
  • [23] Mapping Missing Heritability in PCOS Through Whole-genome Sequence Analysis in Multiplex PCOS Families
    Dunaif, Andrea
    Hayes, M. Geoffrey
    Torchen, Laura
    Sisk, Ryan
    Legro, Richard S.
    Urbanek, Margrit
    JOURNAL OF WOMENS HEALTH, 2014, 23 (10) : 856 - 857
  • [24] Human whole-genome shotgun sequencing
    Weber, JL
    Myers, EW
    GENOME RESEARCH, 1997, 7 (05) : 401 - 409
  • [25] Using the Whole-Genome Sequence To Characterize and Name Human Adenoviruses
    Seto, Donald
    Chodosh, James
    Brister, J. Rodney
    Jones, Morris S.
    JOURNAL OF VIROLOGY, 2011, 85 (11) : 5701 - 5702
  • [26] Source Attribution of Human Campylobacteriosis Using Whole-Genome Sequencing Data and Network Analysis
    Wainaina, Lynda
    Merlotti, Alessandra
    Remondini, Daniel
    Henri, Clementine
    Hald, Tine
    Njage, Patrick Murigu Kamau
    PATHOGENS, 2022, 11 (06):
  • [27] Whole-genome sequencing of multiple Arabidopsis thaliana populations
    Jun Cao
    Korbinian Schneeberger
    Stephan Ossowski
    Torsten Günther
    Sebastian Bender
    Joffrey Fitz
    Daniel Koenig
    Christa Lanz
    Oliver Stegle
    Christoph Lippert
    Xi Wang
    Felix Ott
    Jonas Müller
    Carlos Alonso-Blanco
    Karsten Borgwardt
    Karl J Schmid
    Detlef Weigel
    Nature Genetics, 2011, 43 : 956 - 963
  • [28] Whole-genome sequencing of multiple Arabidopsis thaliana populations
    Cao, Jun
    Schneeberger, Korbinian
    Ossowski, Stephan
    Guenther, Torsten
    Bender, Sebastian
    Fitz, Joffrey
    Koenig, Daniel
    Lanz, Christa
    Stegle, Oliver
    Lippert, Christoph
    Wang, Xi
    Ott, Felix
    Mueller, Jonas
    Alonso-Blanco, Carlos
    Borgwardt, Karsten
    Schmid, Karl J.
    Weigel, Detlef
    NATURE GENETICS, 2011, 43 (10) : 956 - U60
  • [29] Whole-genome mutational burden analysis of three pluripotency induction methods
    Kunal Bhutani
    Kristopher L. Nazor
    Roy Williams
    Ha Tran
    Heng Dai
    Željko Džakula
    Edward H. Cho
    Andy W. C. Pang
    Mahendra Rao
    Han Cao
    Nicholas J. Schork
    Jeanne F. Loring
    Nature Communications, 7
  • [30] Whole-genome mutational burden analysis of three pluripotency induction methods
    Bhutani, Kunal
    Nazor, Kristopher L.
    Williams, Roy
    Ha Tran
    Dai, Heng
    Dzakula, Zeljko
    Cho, Edward H.
    Pang, Andy W. C.
    Rao, Mahendra
    Cao, Han
    Schork, Nicholas J.
    Loring, Jeanne F.
    NATURE COMMUNICATIONS, 2016, 7