Molecular Precursor Species and Their Effects on the Energy Band-Gap of Hydrazine Solution Processed CuIn(S,Se)2 films

被引:0
|
作者
Chung, Choong-Heui [1 ]
Lei, Bao [1 ]
Bob, Brion [1 ]
Duan, Hsin-Sheng [1 ]
Li, Sheng-Han [1 ]
Hou, William W. [1 ]
Yang, Wenbing [1 ]
Yang, Yang [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90024 USA
关键词
Molecular precursors; band gaps; photovoltaic materials; CuInSe2;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We investigate the molecular species present in hydrazine CuIn(Se,S)(2) precursor solutions and their effects on the band-gap of final CuIn(Se,S)(2) films. [Cu6S4](2-) ions and [In-2(Se,S)(4)](2-) ions are present. Sulfur from [In-2(Se,S)(4)](2-) is more effectively incorporated into the final material. This finding makes it possible to precisely control the band gap of CuIn(Se,S)(2) films by adjusting the S/Se ratio of the [In-2(Se,S)(4)](2-) ions in the final precursor solution. These results will enable the precise adjustment and optimization of the energy band-gap in solution-processed CuIn(Se,S)(2) absorber layers for the future fabrication of improved photovoltaic devices.
引用
收藏
页码:2640 / 2643
页数:4
相关论文
共 50 条
  • [1] Identification of the Molecular Precursors for Hydrazine Solution Processed CuIn(Se,S)2 Films and Their Interactions
    Chung, Choong-Heui
    Li, Sheng-Han
    Lei, Bao
    Yang, Wenbing
    Hou, William W.
    Bob, Brion
    Yang, Yang
    CHEMISTRY OF MATERIALS, 2011, 23 (04) : 964 - 969
  • [2] Band-gap engineering in CuIn(Se,S)2 absorbers for solar cells
    Bekker, J.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2009, 93 (05) : 539 - 543
  • [3] Mechanism of Sulfur Incorporation into Solution Processed CuIn(Se,S)2 Films
    Chung, Choong-Heui
    Lei, Bao
    Bob, Brion
    Li, Sheng-Han
    Hou, William W.
    Duan, Hsin-Sheng
    Yang, Yang
    CHEMISTRY OF MATERIALS, 2011, 23 (22) : 4941 - 4946
  • [4] CuIn(Se,S)2 Absorbers Processed Using a Hydrazine-Based Solution Approach
    Liu, Wei
    Mitzi, David B.
    Chey, S. Jay
    Kellock, Andrew
    PHOTOVOLTAIC MATERIALS AND MANUFACTURING ISSUES, 2009, 1123 : 117 - +
  • [5] Growth and Band-gap Estimation of CuIn3Se5 Polycrystalline Thin Films
    Hayakawa, Akinori
    Mizutani, Tsutomu
    Nakanishi, Hisayuki
    Chichibu, Shigefusa F.
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2000, 39 (01) : 162 - 163
  • [6] Low band-gap CuIn(S,Se)2 thin film solar cells using molecular ink with 9.5% efficiency
    Wang, Yajie
    Lin, Xianzhong
    Wang, Lan
    Koehler, Tristan
    Lux-Steiner, Martha Ch.
    Klenk, Reiner
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 14 NO 6, 2017, 14 (06):
  • [7] Structure engineering of solution-processed precursor films for low temperature fabrication of CuIn(S,Se)2 solar cells
    Yu, Shaotang
    Jiang, Jingjing
    Han, Shuaiqi
    Hao, Shasha
    Zhu, Qiang
    Gong, Yuancai
    Yan, Weibo
    Huang, Wei
    Xin, Hao
    SOLAR ENERGY, 2021, 220 (220) : 796 - 801
  • [8] Single Molecular Precursor Solution for CuIn(S,Se)2 Thin Films Photovoltaic Cells: Structure and Device Characteristics
    Tiwari, Devendra
    Koehler, Tristan
    Ling, Xianzhong
    Sarua, Andrei
    Harniman, Robert
    Wang, Lan
    Klenk, Reiner
    Fermin, David J.
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (03) : 2301 - 2308
  • [9] Impurity induced band-gap narrowing in p-type CuIn1-xGax(S,Se)2
    Persson, Clas
    THIN SOLID FILMS, 2009, 517 (07) : 2374 - 2379
  • [10] Wurtzite CuIn(S x Se1-x )2 Nanocrystals: Colloidal Synthesis and Band-Gap Engineering
    Zu, Bingqian
    Chen, Song
    Jin, Qiren
    Xu, Zilong
    Wu, Xudong
    Wu, Liang
    INORGANIC CHEMISTRY, 2024, 63 (46) : 21816 - 21821